Synthetic Biology Group, Research Lab of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard Biophysics Program, Boston, MA, USA.
Biotechnol J. 2014 May;9(5):597-608. doi: 10.1002/biot.201300258. Epub 2014 Feb 20.
Biotechnology offers the promise of valuable chemical production via microbial processing of renewable and inexpensive substrates. Thus far, static metabolic engineering strategies have enabled this field to advance industrial applications. However, the industrial scaling of statically engineered microbes inevitably creates inefficiencies due to variable conditions present in large-scale microbial cultures. Synthetic gene circuits that dynamically sense and regulate different molecules can resolve this issue by enabling cells to continuously adapt to variable conditions. These circuits also have the potential to enable next-generation production programs capable of autonomous transitioning between steps in a bioprocess. Here, we review the design and application of two main classes of dynamic gene circuits, digital and analog, for biotechnology. Within the context of these classes, we also discuss the potential benefits of digital-analog interconversion, memory, and multi-signal integration. Though synthetic gene circuits have largely been applied for cellular computation to date, we envision that utilizing them in biotechnology will enhance the efficiency and scope of biochemical production with living cells.
生物技术通过微生物对可再生和廉价基质的处理,为有价值的化学品生产提供了可能。到目前为止,静态代谢工程策略使该领域能够推进工业应用。然而,由于大规模微生物培养中存在的各种条件,静态工程微生物的工业规模化不可避免地会造成效率低下。能够动态感知和调节不同分子的合成基因电路可以通过使细胞能够不断适应变化的条件来解决这个问题。这些电路还有可能使新一代的生产程序能够在生物过程的步骤之间自主转换。在这里,我们综述了用于生物技术的两种主要类型的动态基因电路,即数字和模拟电路的设计和应用。在这些类别中,我们还讨论了数字-模拟转换、记忆和多信号集成的潜在好处。尽管迄今为止,合成基因电路主要应用于细胞计算,但我们设想将其用于生物技术将提高生化生产的效率和范围,使活细胞受益。