Suppr超能文献

基于深度迁移学习的胶囊内镜图像下肠道出血自动检测

Deep Transfer Learning for Automated Intestinal Bleeding Detection in Capsule Endoscopy Imaging.

机构信息

Department of Electrical and Computer Engineering, University of Alabama, Alabama, 35401, Tuscaloosa, USA.

Department of Informatics, College of Computing , New Jersey Institute of Technology, Newark, 07103, New Jersey, USA.

出版信息

J Digit Imaging. 2021 Apr;34(2):404-417. doi: 10.1007/s10278-021-00428-3. Epub 2021 Mar 16.

Abstract

PURPOSE

The objective of this paper was to develop a computer-aided diagnostic (CAD) tools for automated analysis of capsule endoscopic (CE) images, more precisely, detect small intestinal abnormalities like bleeding.

METHODS

In particular, we explore a convolutional neural network (CNN)-based deep learning framework to identify bleeding and non-bleeding CE images, where a pre-trained AlexNet neural network is used to train a transfer learning CNN that carries out the identification. Moreover, bleeding zones in a bleeding-identified image are also delineated using deep learning-based semantic segmentation that leverages a SegNet deep neural network.

RESULTS

To evaluate the performance of the proposed framework, we carry out experiments on two publicly available clinical datasets and achieve a 98.49% and 88.39% F1 score, respectively, on the capsule endoscopy.org and KID datasets. For bleeding zone identification, 94.42% global accuracy and 90.69% weighted intersection over union (IoU) are achieved.

CONCLUSION

Finally, our performance results are compared to other recently developed state-of-the-art methods, and consistent performance advances are demonstrated in terms of performance measures for bleeding image and bleeding zone detection. Relative to the present and established practice of manual inspection and annotation of CE images by a physician, our framework enables considerable annotation time and human labor savings in bleeding detection in CE images, while providing the additional benefits of bleeding zone delineation and increased detection accuracy. Moreover, the overall cost of CE enabled by our framework will also be much lower due to the reduction of manual labor, which can make CE affordable for a larger population.

摘要

目的

本文旨在开发一种计算机辅助诊断(CAD)工具,用于自动分析胶囊内镜(CE)图像,更具体地说,检测出血等小肠异常。

方法

特别是,我们探索了一种基于卷积神经网络(CNN)的深度学习框架,用于识别出血和非出血的 CE 图像,其中使用预先训练的 AlexNet 神经网络来训练执行识别的迁移学习 CNN。此外,还使用基于深度学习的语义分割来划定识别为出血的图像中的出血区域,该分割利用 SegNet 深度神经网络。

结果

为了评估所提出框架的性能,我们在两个公开的临床数据集上进行了实验,在 capsule endoscopy.org 和 KID 数据集上分别获得了 98.49%和 88.39%的 F1 分数。对于出血区域识别,获得了 94.42%的全局准确率和 90.69%的加权交并比(IoU)。

结论

最后,将我们的性能结果与其他最近开发的最先进方法进行了比较,在出血图像和出血区域检测的性能指标方面,展示了一致的性能提升。与由医生手动检查和注释 CE 图像的现有实践相比,我们的框架在 CE 图像的出血检测中可以节省大量的注释时间和人力,同时提供出血区域划定和提高检测准确性的额外好处。此外,由于减少了人工劳动,我们的框架所实现的 CE 的总成本也将大大降低,这使得更多的人能够负担得起 CE。

相似文献

引用本文的文献

本文引用的文献

6
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.SegNet:一种用于图像分割的深度卷积编解码器架构。
IEEE Trans Pattern Anal Mach Intell. 2017 Dec;39(12):2481-2495. doi: 10.1109/TPAMI.2016.2644615. Epub 2017 Jan 2.
7
Automatic blood detection in capsule endoscopy video.胶囊内镜视频中的自动血液检测。
J Biomed Opt. 2016 Dec 1;21(12):126007. doi: 10.1117/1.JBO.21.12.126007.
8
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.更快的 R-CNN:基于区域建议网络的实时目标检测。
IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1137-1149. doi: 10.1109/TPAMI.2016.2577031. Epub 2016 Jun 6.
10
Deep learning.深度学习。
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验