Yoon Hyung Ki, Lou Xia, Chen Yu-Chih, Koo Lee Yong-Eun, Yoon Euisik, Kopelman Raoul
Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, United States.
Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, United States.
Chem Mater. 2014 Feb 25;26(4):1592-1600. doi: 10.1021/cm403505s.
This work is aimed at engineering photosensitizer embedded nanoparticles (NPs) that produce optimal amount of reactive oxygen species (ROS) for photodynamic therapy (PDT). A revised synthetic approach, coupled with improved analytical tools, resulted in more efficient PDT. Specifically, methylene blue (MB) conjugated polyacrylamide nanoparticles (PAA NPs), with a polyethylene glycol dimethacrylate (PEGDMA, M 550) cross-linker, were synthesized so as to improve the efficacy of cancer PDT. The long cross-linker chain, PEGDMA, increases the distance between the conjugated MB molecules so as to avoid self-quenching of the excited states or species, and also enhances the oxygen permeability of the NP matrix, when compared to the previously used shorter cross-linker. The overall ROS production from the MB-PEGDMA PAA NPs was evaluated using the traditional way of monitoring the oxidation rate kinetics of anthracence-9,10-dipropionic acid (ADPA). We also applied (SOSG) so as to selectively derive the singlet oxygen (O) production rate. This analysis enabled us to investigate the ROS composition mix based on varied MB loading. To effectively obtain the correlation between the ROS productivity and the cell killing efficacy, a microfluidic chip device was employed to provide homogeneous light illumination from an LED for rapid PDT efficacy tests, enabling simultaneous multiple measurements while using only small amounts of NPs sample. This provided multiplexed, comprehensive PDT efficacy assays, leading to the determination of a near optimal loading of MB in a PAA matrix for high PDT efficacy by measuring the light-dose-dependent cell killing effects of the various MB-PEGDMA PAA NPs using C6 glioma cancer cells.
这项工作旨在设计嵌入光敏剂的纳米颗粒(NPs),以产生用于光动力疗法(PDT)的最佳量的活性氧(ROS)。一种经过改进的合成方法,结合改进的分析工具,带来了更有效的光动力疗法。具体而言,合成了带有聚乙二醇二甲基丙烯酸酯(PEGDMA,M 550)交联剂的亚甲基蓝(MB)共轭聚丙烯酰胺纳米颗粒(PAA NPs),以提高癌症光动力疗法的疗效。与先前使用的较短交联剂相比,长交联剂链PEGDMA增加了共轭MB分子之间的距离,从而避免激发态或物质的自猝灭,并且还提高了NP基质的氧渗透性。使用监测蒽-9,10-二丙酸(ADPA)氧化速率动力学的传统方法评估了MB-PEGDMA PAA NPs产生的总ROS。我们还应用了单线态氧传感器绿荧光蛋白(SOSG),以选择性地得出单线态氧(O)的产生速率。该分析使我们能够基于不同的MB负载量研究ROS组成混合物。为了有效地获得ROS产生能力与细胞杀伤效果之间的相关性,采用了微流控芯片装置,以提供来自LED的均匀光照,用于快速光动力疗法效果测试,仅使用少量NP样品即可同时进行多次测量。这提供了多重、全面的光动力疗法效果测定,通过使用C6胶质瘤癌细胞测量各种MB-PEGDMA PAA NPs的光剂量依赖性细胞杀伤作用,从而确定PAA基质中接近最佳的MB负载量以实现高光动力疗法疗效。