Suppr超能文献

用于压缩多通道数据采集的紧凑型低功耗皮层记录架构。

Compact low-power cortical recording architecture for compressive multichannel data acquisition.

作者信息

Shoaran Mahsa, Kamal Mahdad Hosseini, Pollo Claudio, Vandergheynst Pierre, Schmid Alexandre

出版信息

IEEE Trans Biomed Circuits Syst. 2014 Dec;8(6):857-70. doi: 10.1109/TBCAS.2014.2304582. Epub 2014 Apr 9.

Abstract

This paper introduces an area- and power-efficient approach for compressive recording of cortical signals used in an implantable system prior to transmission. Recent research on compressive sensing has shown promising results for sub-Nyquist sampling of sparse biological signals. Still, any large-scale implementation of this technique faces critical issues caused by the increased hardware intensity. The cost of implementing compressive sensing in a multichannel system in terms of area usage can be significantly higher than a conventional data acquisition system without compression. To tackle this issue, a new multichannel compressive sensing scheme which exploits the spatial sparsity of the signals recorded from the electrodes of the sensor array is proposed. The analysis shows that using this method, the power efficiency is preserved to a great extent while the area overhead is significantly reduced resulting in an improved power-area product. The proposed circuit architecture is implemented in a UMC 0.18 [Formula: see text]m CMOS technology. Extensive performance analysis and design optimization has been done resulting in a low-noise, compact and power-efficient implementation. The results of simulations and subsequent reconstructions show the possibility of recovering fourfold compressed intracranial EEG signals with an SNR as high as 21.8 dB, while consuming 10.5 [Formula: see text]W of power within an effective area of 250 [Formula: see text]m × 250 [Formula: see text]m per channel.

摘要

本文介绍了一种用于植入式系统中皮质信号压缩记录的面积和功耗高效方法,该记录在信号传输之前进行。最近关于压缩感知的研究表明,对于稀疏生物信号的亚奈奎斯特采样具有很有前景的结果。然而,该技术的任何大规模实现都面临着由硬件强度增加所导致的关键问题。在多通道系统中,就面积使用而言,实现压缩感知的成本可能显著高于无压缩的传统数据采集系统。为解决这一问题,提出了一种新的多通道压缩感知方案,该方案利用从传感器阵列电极记录的信号的空间稀疏性。分析表明,使用该方法,在很大程度上保持了功率效率,同时显著降低了面积开销,从而提高了功率 - 面积积。所提出的电路架构采用UMC 0.18 [公式:见原文]m CMOS技术实现。进行了广泛的性能分析和设计优化,从而实现了低噪声、紧凑且功耗高效的设计。仿真结果及后续重建结果表明,有可能恢复四倍压缩的颅内脑电图信号,其信噪比高达21.8 dB,同时每通道在250 [公式:见原文]m×250 [公式:见原文]m的有效面积内消耗10.5 [公式:见原文]W的功率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验