Suppr超能文献

使用贝叶斯自适应样条对生命历程血压轨迹进行建模。

Modelling life course blood pressure trajectories using Bayesian adaptive splines.

作者信息

Muniz-Terrera Graciela, Bakra Eleni, Hardy Rebecca, Matthews Fiona E, Lunn David

机构信息

MRC Unit for Lifelong Health and Ageing at UCL, London, UK

MRC Biostatistics Unit.

出版信息

Stat Methods Med Res. 2016 Dec;25(6):2767-2780. doi: 10.1177/0962280214532576. Epub 2014 Apr 25.

Abstract

No single study has collected data over individuals' entire lifespans. To understand changes over the entire life course, it is necessary to combine data from various studies that cover the whole life course. Such combination may be methodologically challenging due to potential differences in study protocols, information available and instruments used to measure the outcome of interest. Motivated by our interest in modelling blood pressure changes over the life course, we propose the use of Bayesian adaptive splines within a hierarchical setting to combine data from several UK-based longitudinal studies where blood pressure measures were taken in different stages of life. Our method allowed us to obtain a realistic estimate of the mean life course trajectory, quantify the variability both within and between studies, and examine overall and study specific effects of relevant risk factors on life course blood pressure changes.

摘要

没有任何一项研究收集了个体整个生命周期的数据。为了了解整个生命过程中的变化,有必要将来自涵盖整个生命过程的各种研究的数据进行合并。由于研究方案、可用信息以及用于测量感兴趣结果的工具可能存在差异,这种合并在方法上可能具有挑战性。出于我们对模拟整个生命过程中血压变化的兴趣,我们建议在分层框架内使用贝叶斯自适应样条来合并来自英国几项纵向研究的数据,这些研究在生命的不同阶段进行了血压测量。我们的方法使我们能够获得生命过程平均轨迹的实际估计值,量化研究内部和研究之间的变异性,并检验相关风险因素对生命过程血压变化的总体和特定研究效应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf22/5122837/001a34650812/10.1177_0962280214532576-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验