Shimoni Olga, Cervenka Jiri, Karle Timothy J, Fox Kate, Gibson Brant C, Tomljenovic-Hanic Snjezana, Greentree Andrew D, Prawer Steven
School of Physics, The University of Melbourne , Parkville, Victoria 3010, Australia.
ACS Appl Mater Interfaces. 2014 Jun 11;6(11):8894-902. doi: 10.1021/am5016556. Epub 2014 May 30.
We demonstrate a robust templated approach to pattern thin films of chemical vapor deposited nanocrystalline diamond grown from monodispersed nanodiamond (mdND) seeds. The method works on a range of substrates, and we herein demonstrate the method using silicon, aluminum nitride (AlN), and sapphire substrates. Patterns are defined using photo- and e-beam lithography, which are seeded with mdND colloids and subsequently introduced into microwave assisted chemical vapor deposition reactor to grow patterned nanocrystalline diamond films. In this study, we investigate various factors that affect the selective seeding of different substrates to create high quality diamond thin films, including mdND surface termination, zeta potential, surface treatment, and plasma cleaning. Although the electrostatic interaction between mdND colloids and substrates is the main process driving adherence, we found that chemical reaction (esterification) or hydrogen bonding can potentially dominate the seeding process. Leveraging the knowledge on these different interactions, we optimize fabrication protocols to eliminate unwanted diamond nucleation outside the patterned areas. Furthermore, we have achieved the deposition of patterned diamond films and arrays over a range of feature sizes. This study contributes to a comprehensive understanding of the mdND-substrate interaction that will enable the fabrication of integrated nanocrystalline diamond thin films for microelectronics, sensors, and tissue culturing applications.
我们展示了一种强大的模板法,用于形成由单分散纳米金刚石(mdND)种子生长的化学气相沉积纳米晶金刚石薄膜图案。该方法适用于一系列衬底,我们在此使用硅、氮化铝(AlN)和蓝宝石衬底演示了该方法。图案是通过光刻和电子束光刻定义的,在这些图案上播种mdND胶体,随后将其引入微波辅助化学气相沉积反应器中,以生长图案化的纳米晶金刚石薄膜。在本研究中,我们研究了影响不同衬底选择性播种以制备高质量金刚石薄膜的各种因素,包括mdND表面终止、zeta电位、表面处理和等离子体清洗。虽然mdND胶体与衬底之间的静电相互作用是驱动粘附的主要过程,但我们发现化学反应(酯化)或氢键作用可能在播种过程中起主导作用。利用对这些不同相互作用的了解,我们优化了制造方案,以消除图案化区域外不需要的金刚石成核。此外,我们已经实现了在一系列特征尺寸上沉积图案化的金刚石薄膜和阵列。这项研究有助于全面理解mdND与衬底的相互作用,这将使用于微电子、传感器和组织培养应用的集成纳米晶金刚石薄膜的制造成为可能。