Suppr超能文献

大数据、开放科学与大脑:从基因组学中汲取的经验教训。

Big data, open science and the brain: lessons learned from genomics.

作者信息

Choudhury Suparna, Fishman Jennifer R, McGowan Michelle L, Juengst Eric T

机构信息

Division of Social and Transcultural Psychiatry, McGill University and Lady Davis Institute, Jewish General Hospital Montreal, QC, Canada.

Biomedical Ethics Unit, Social Studies of Medicine Department, McGill University Montreal, QC, Canada.

出版信息

Front Hum Neurosci. 2014 May 16;8:239. doi: 10.3389/fnhum.2014.00239. eCollection 2014.

Abstract

The BRAIN Initiative aims to break new ground in the scale and speed of data collection in neuroscience, requiring tools to handle data in the magnitude of yottabytes (10(24)). The scale, investment and organization of it are being compared to the Human Genome Project (HGP), which has exemplified "big science" for biology. In line with the trend towards Big Data in genomic research, the promise of the BRAIN Initiative, as well as the European Human Brain Project, rests on the possibility to amass vast quantities of data to model the complex interactions between the brain and behavior and inform the diagnosis and prevention of neurological disorders and psychiatric disease. Advocates of this "data driven" paradigm in neuroscience argue that harnessing the large quantities of data generated across laboratories worldwide has numerous methodological, ethical and economic advantages, but it requires the neuroscience community to adopt a culture of data sharing and open access to benefit from them. In this article, we examine the rationale for data sharing among advocates and briefly exemplify these in terms of new "open neuroscience" projects. Then, drawing on the frequently invoked model of data sharing in genomics, we go on to demonstrate the complexities of data sharing, shedding light on the sociological and ethical challenges within the realms of institutions, researchers and participants, namely dilemmas around public/private interests in data, (lack of) motivation to share in the academic community, and potential loss of participant anonymity. Our paper serves to highlight some foreseeable tensions around data sharing relevant to the emergent "open neuroscience" movement.

摘要

“大脑计划”旨在在神经科学数据收集的规模和速度方面开辟新天地,这需要能够处理尧字节(10的24次方)量级数据的工具。其规模、投入和组织方式正被拿来与人类基因组计划(HGP)作比较,人类基因组计划堪称生物学领域“大科学”的典范。与基因组研究中的大数据趋势一致,“大脑计划”以及欧洲人类大脑计划的前景,取决于能否积累海量数据,以模拟大脑与行为之间的复杂相互作用,并为神经疾病和精神疾病的诊断及预防提供依据。神经科学领域这种“数据驱动”范式的支持者认为,利用全球各实验室产生的大量数据具有诸多方法学、伦理和经济优势,但这要求神经科学界采用数据共享和开放获取的文化,以便从中受益。在本文中,我们审视了倡导者之间数据共享的基本原理,并简要通过新的“开放神经科学”项目举例说明。然后,借鉴基因组学中经常被援引的数据共享模式,我们进而展示数据共享的复杂性,揭示机构、研究人员和参与者层面的社会学和伦理挑战,即围绕数据的公共/私人利益的困境、学术团体中(缺乏)共享的动机以及参与者匿名性的潜在丧失。我们的论文旨在突出与新兴的“开放神经科学”运动相关的数据共享方面一些可预见的紧张关系。

相似文献

6
Data sharing in neuroimaging research.神经影像学研究中的数据共享。
Front Neuroinform. 2012 Apr 5;6:9. doi: 10.3389/fninf.2012.00009. eCollection 2012.
7
Responsible Data Governance of Neuroscience Big Data.神经科学大数据的责任数据治理
Front Neuroinform. 2019 Apr 24;13:28. doi: 10.3389/fninf.2019.00028. eCollection 2019.

引用本文的文献

10
The evolution of Big Data in neuroscience and neurology.神经科学与神经病学中大数据的发展
J Big Data. 2023;10(1):116. doi: 10.1186/s40537-023-00751-2. Epub 2023 Jul 10.

本文引用的文献

2
Data Interpretation in the Digital Age.数字时代的数据解读
Perspect Sci. 2014 Sep 12;22(3):397-417. doi: 10.1162/POSC_a_00140.
3
Unpublished genomic data-how to share?未发表的基因组数据——如何共享?
BMC Genomics. 2014 Jan 14;15:5. doi: 10.1186/1471-2164-15-5.
9
Evolving approaches to the ethical management of genomic data.基因组数据伦理管理方法的演进。
Trends Genet. 2013 Jun;29(6):375-82. doi: 10.1016/j.tig.2013.02.001. Epub 2013 Feb 28.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验