Suppr超能文献

利用高通量测序数据构建和分析高密度连锁图谱。

Construction and analysis of high-density linkage map using high-throughput sequencing data.

机构信息

Biomarker Technologies Corporation, Beijing, China.

Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.

出版信息

PLoS One. 2014 Jun 6;9(6):e98855. doi: 10.1371/journal.pone.0098855. eCollection 2014.

Abstract

Linkage maps enable the study of important biological questions. The construction of high-density linkage maps appears more feasible since the advent of next-generation sequencing (NGS), which eases SNP discovery and high-throughput genotyping of large population. However, the marker number explosion and genotyping errors from NGS data challenge the computational efficiency and linkage map quality of linkage study methods. Here we report the HighMap method for constructing high-density linkage maps from NGS data. HighMap employs an iterative ordering and error correction strategy based on a k-nearest neighbor algorithm and a Monte Carlo multipoint maximum likelihood algorithm. Simulation study shows HighMap can create a linkage map with three times as many markers as ordering-only methods while offering more accurate marker orders and stable genetic distances. Using HighMap, we constructed a common carp linkage map with 10,004 markers. The singleton rate was less than one-ninth of that generated by JoinMap4.1. Its total map distance was 5,908 cM, consistent with reports on low-density maps. HighMap is an efficient method for constructing high-density, high-quality linkage maps from high-throughput population NGS data. It will facilitate genome assembling, comparative genomic analysis, and QTL studies. HighMap is available at http://highmap.biomarker.com.cn/.

摘要

连锁图谱使研究重要的生物学问题成为可能。随着新一代测序(NGS)的出现,高密度连锁图谱的构建似乎更加可行,因为它简化了 SNP 的发现和对大量人群的高通量基因分型。然而,NGS 数据中的标记数量爆炸和基因分型错误挑战了连锁研究方法的计算效率和连锁图谱质量。在这里,我们报告了一种用于从 NGS 数据构建高密度连锁图谱的 HighMap 方法。HighMap 采用基于 k-最近邻算法和蒙特卡罗多点最大似然算法的迭代排序和纠错策略。模拟研究表明,HighMap 可以创建一个比仅排序方法多三倍标记的连锁图谱,同时提供更准确的标记顺序和稳定的遗传距离。使用 HighMap,我们构建了一个带有 10004 个标记的鲤鱼连锁图谱。单倍体率不到 JoinMap4.1 生成的单倍体率的九分之一。其总图谱距离为 5908cM,与低密度图谱的报告一致。HighMap 是一种从高通量群体 NGS 数据构建高密度、高质量连锁图谱的有效方法。它将有助于基因组组装、比较基因组分析和 QTL 研究。HighMap 可在 http://highmap.biomarker.com.cn/ 获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75c1/4048240/b8990fc1b0de/pone.0098855.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验