de Araujo Charlotte, Arefeen Dewan, Tadesse Yohannes, Long Benedict M, Price G Dean, Rowlett Roger S, Kimber Matthew S, Espie George S
Department of Cell & Systems Biology, University of Toronto, Mississauga, ON, Canada.
Photosynth Res. 2014 Sep;121(2-3):135-50. doi: 10.1007/s11120-014-0018-4. Epub 2014 Jun 8.
Carboxysomes are proteinaceous microcompartments that encapsulate carbonic anhydrase (CA) and ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco); carboxysomes, therefore, catalyze reversible HCO3 (-) dehydration and the subsequent fixation of CO2. The N- and C-terminal domains of the β-carboxysome scaffold protein CcmM participate in a network of protein-protein interactions that are essential for carboxysome biogenesis, organization, and function. The N-terminal domain of CcmM in the thermophile Thermosynechococcus elongatus BP-1 is also a catalytically active, redox regulated γ-CA. To experimentally determine if CcmM from a mesophilic cyanobacterium is active, we cloned, expressed and purified recombinant, full-length CcmM from Nostoc sp. PCC 7120 as well as the N-terminal 209 amino acid γ-CA-like domain. Both recombinant proteins displayed ethoxyzolamide-sensitive CA activity in mass spectrometric assays, as did the carboxysome-enriched TP fraction. NstCcmM209 was characterized as a moderately active and efficient γ-CA with a k cat of 2.0 × 10(4) s(-1) and k cat/K m of 4.1 × 10(6) M(-1) s(-1) at 25 °C and pH 8, a pH optimum between 8 and 9.5 and a temperature optimum spanning 25-35 °C. NstCcmM209 also catalyzed the hydrolysis of the CO2 analog carbonyl sulfide. Circular dichroism and intrinsic tryptophan fluorescence analysis demonstrated that NstCcmM209 was progressively and irreversibly denatured above 50 °C. NstCcmM209 activity was inhibited by the reducing agent tris(hydroxymethyl)phosphine, an effect that was fully reversed by a molar excess of diamide, a thiol oxidizing agent, consistent with oxidative activation being a universal regulatory mechanism of CcmM orthologs. Immunogold electron microscopy and Western blot analysis of TP pellets indicated that Rubisco and CcmM co-localize and are concentrated in Nostoc sp. PCC 7120 carboxysomes.
羧酶体是一种蛋白质微区室,包封着碳酸酐酶(CA)和1,5-二磷酸核酮糖羧化酶/加氧酶(Rubisco);因此,羧酶体催化可逆的HCO3 (-)脱水以及随后的CO2固定。β-羧酶体支架蛋白CcmM的N端和C端结构域参与了蛋白质-蛋白质相互作用网络,这对于羧酶体的生物发生、组织和功能至关重要。嗜热蓝藻嗜热栖热放线菌BP-1中CcmM的N端结构域也是一种具有催化活性、受氧化还原调节的γ-CA。为了通过实验确定中温蓝藻的CcmM是否具有活性,我们克隆、表达并纯化了来自集胞藻属PCC 7120的重组全长CcmM以及N端209个氨基酸的γ-CA样结构域。在质谱分析中,这两种重组蛋白以及富含羧酶体的TP组分均表现出对乙氧唑胺敏感的CA活性。NstCcmM209被表征为一种中等活性且高效的γ-CA,在25°C和pH 8时,其k cat为2.0×10(4) s(-1),k cat/K m为4.1×10(6) M(-1) s(-1),最适pH在8至9.5之间,最适温度范围为25至35°C。NstCcmM209还催化了CO2类似物羰基硫的水解。圆二色性和内源色氨酸荧光分析表明,NstCcmM209在50°C以上会逐渐且不可逆地变性。NstCcmM209的活性受到还原剂三(羟甲基)膦的抑制,而过量的二酰胺(一种硫醇氧化剂)可完全逆转这种抑制作用,这表明氧化激活是CcmM直系同源物的一种普遍调节机制。对TP沉淀的免疫金电子显微镜和蛋白质免疫印迹分析表明,Rubisco和CcmM共定位并集中在集胞藻属PCC 7120的羧酶体中。