Suppr超能文献

用于 pooled screening 和生成哺乳动物遗传互作图谱的功能基因组学平台。

Functional genomics platform for pooled screening and generation of mammalian genetic interaction maps.

机构信息

1] Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, California, USA. [2] Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA. [3].

1] Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, California, USA. [2] Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA. [3] [4].

出版信息

Nat Protoc. 2014 Aug;9(8):1825-47. doi: 10.1038/nprot.2014.103. Epub 2014 Jul 3.

Abstract

Systematic genetic interaction maps in microorganisms are powerful tools for identifying functional relationships between genes and for defining the function of uncharacterized genes. We have recently implemented this strategy in mammalian cells as a two-stage approach. First, genes of interest are robustly identified in a pooled genome-wide screen using complex shRNA libraries. Second, phenotypes for all pairwise combinations of 'hit' genes are measured in a double-shRNA screen and used to construct a genetic interaction map. Our protocol allows for rapid pooled screening under various conditions without a requirement for robotics, in contrast to arrayed approaches. Each round of screening can be implemented in ∼2 weeks, with additional time for analysis and generation of reagents. We discuss considerations for screen design, and we present complete experimental procedures, as well as a full computational analysis suite for the identification of hits in pooled screens and generation of genetic interaction maps. Although the protocol outlined here was developed for our original shRNA-based approach, it can be applied more generally, including to CRISPR-based approaches.

摘要

系统遗传学相互作用图谱在微生物中是一种强大的工具,可用于鉴定基因之间的功能关系,并定义未鉴定基因的功能。我们最近在哺乳动物细胞中实现了这一策略,采用两阶段方法。首先,使用复杂的 shRNA 文库在全基因组筛选中稳健地鉴定感兴趣的基因。其次,在双 shRNA 筛选中测量所有“命中”基因的成对组合的表型,并用于构建遗传相互作用图谱。与阵列方法不同,我们的方案允许在无需机器人的情况下在各种条件下快速进行 pooled 筛选。每轮筛选可在大约 2 周内完成,另外还需要时间进行分析和生成试剂。我们讨论了筛选设计的注意事项,并提供了完整的实验程序,以及用于鉴定 pooled 筛选中的命中和生成遗传相互作用图谱的完整计算分析套件。虽然这里概述的方案是为我们最初的基于 shRNA 的方法开发的,但它可以更普遍地应用,包括基于 CRISPR 的方法。

相似文献

1
Functional genomics platform for pooled screening and generation of mammalian genetic interaction maps.
Nat Protoc. 2014 Aug;9(8):1825-47. doi: 10.1038/nprot.2014.103. Epub 2014 Jul 3.
2
Integrated platform for genome-wide screening and construction of high-density genetic interaction maps in mammalian cells.
Proc Natl Acad Sci U S A. 2013 Jun 18;110(25):E2317-26. doi: 10.1073/pnas.1307002110. Epub 2013 Jun 5.
3
Pooled lentiviral shRNA screening for functional genomics in mammalian cells.
Methods Mol Biol. 2011;781:161-82. doi: 10.1007/978-1-61779-276-2_9.
4
Pooled shRNA Screening in Mammalian Cells as a Functional Genomic Discovery Platform.
Methods Mol Biol. 2016;1470:49-73. doi: 10.1007/978-1-4939-6337-9_5.
5
Pooled Lentiviral CRISPR-Cas9 Screens for Functional Genomics in Mammalian Cells.
Methods Mol Biol. 2019;1869:169-188. doi: 10.1007/978-1-4939-8805-1_15.
6
Pooled shRNA screenings: experimental approach.
Methods Mol Biol. 2013;980:353-70. doi: 10.1007/978-1-62703-287-2_21.
7
Optimized PCR conditions and increased shRNA fold representation improve reproducibility of pooled shRNA screens.
PLoS One. 2012;7(8):e42341. doi: 10.1371/journal.pone.0042341. Epub 2012 Aug 1.
8
A systematic mammalian genetic interaction map reveals pathways underlying ricin susceptibility.
Cell. 2013 Feb 14;152(4):909-22. doi: 10.1016/j.cell.2013.01.030. Epub 2013 Feb 8.
9
A comprehensive platform for highly multiplexed mammalian functional genetic screens.
BMC Genomics. 2011 May 6;12:213. doi: 10.1186/1471-2164-12-213.
10
A primer on using pooled shRNA libraries for functional genomic screens.
Acta Biochim Biophys Sin (Shanghai). 2012 Feb;44(2):103-12. doi: 10.1093/abbs/gmr116.

引用本文的文献

1
The Hsp40 co-chaperone DNAJC7 modifies polyglutamine but not polyglycine aggregation.
bioRxiv. 2025 Aug 12:2025.08.10.669490. doi: 10.1101/2025.08.10.669490.
2
Functional multiomics reveals genetic and pharmacologic regulation of surface CD38 in multiple myeloma.
Blood Neoplasia. 2024 Jun 10;1(3):100025. doi: 10.1016/j.bneo.2024.100025. eCollection 2024 Sep.
4
CRISPRi-based screens in iAssembloids to elucidate neuron-glia interactions.
Neuron. 2025 Mar 5;113(5):701-718.e8. doi: 10.1016/j.neuron.2024.12.016. Epub 2025 Jan 14.
5
A multiomics approach reveals RNA dynamics promote cellular sensitivity to DNA hypomethylation.
Sci Rep. 2024 Oct 29;14(1):25940. doi: 10.1038/s41598-024-77314-9.
6
Potential promising of synthetic lethality in cancer research and treatment.
Naunyn Schmiedebergs Arch Pharmacol. 2025 Feb;398(2):1403-1431. doi: 10.1007/s00210-024-03444-6. Epub 2024 Sep 21.
7
An engineered trafficking biosensor reveals a role for DNAJC13 in DOR downregulation.
Nat Chem Biol. 2025 Mar;21(3):360-370. doi: 10.1038/s41589-024-01705-2. Epub 2024 Sep 2.
8
Using High-Throughput Measurements to Identify Principles of Transcriptional and Epigenetic Regulators.
Methods Mol Biol. 2024;2842:79-101. doi: 10.1007/978-1-0716-4051-7_4.
9
A genome-wide screen links peroxisome regulation with Wnt signaling through RNF146 and TNKS/2.
J Cell Biol. 2024 Oct 7;223(10). doi: 10.1083/jcb.202312069. Epub 2024 Jul 5.
10
Genome-scale exon perturbation screens uncover exons critical for cell fitness.
Mol Cell. 2024 Jul 11;84(13):2553-2572.e19. doi: 10.1016/j.molcel.2024.05.024. Epub 2024 Jun 24.

本文引用的文献

1
Genome-scale CRISPR-Cas9 knockout screening in human cells.
Science. 2014 Jan 3;343(6166):84-87. doi: 10.1126/science.1247005. Epub 2013 Dec 12.
2
Genetic screens in human cells using the CRISPR-Cas9 system.
Science. 2014 Jan 3;343(6166):80-4. doi: 10.1126/science.1246981. Epub 2013 Dec 12.
3
Next-generation NAMPT inhibitors identified by sequential high-throughput phenotypic chemical and functional genomic screens.
Chem Biol. 2013 Nov 21;20(11):1352-63. doi: 10.1016/j.chembiol.2013.09.014. Epub 2013 Oct 31.
4
CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes.
Cell. 2013 Jul 18;154(2):442-51. doi: 10.1016/j.cell.2013.06.044. Epub 2013 Jul 11.
5
Integrated platform for genome-wide screening and construction of high-density genetic interaction maps in mammalian cells.
Proc Natl Acad Sci U S A. 2013 Jun 18;110(25):E2317-26. doi: 10.1073/pnas.1307002110. Epub 2013 Jun 5.
6
Mapping genetic interactions in human cancer cells with RNAi and multiparametric phenotyping.
Nat Methods. 2013 May;10(5):427-31. doi: 10.1038/nmeth.2436. Epub 2013 Apr 7.
7
Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression.
Cell. 2013 Feb 28;152(5):1173-83. doi: 10.1016/j.cell.2013.02.022.
8
Quantitative genetic-interaction mapping in mammalian cells.
Nat Methods. 2013 May;10(5):432-7. doi: 10.1038/nmeth.2398. Epub 2013 Feb 13.
9
A systematic mammalian genetic interaction map reveals pathways underlying ricin susceptibility.
Cell. 2013 Feb 14;152(4):909-22. doi: 10.1016/j.cell.2013.01.030. Epub 2013 Feb 8.
10
Molecular biology. Use and abuse of RNAi to study mammalian gene function.
Science. 2012 Jul 27;337(6093):421-2. doi: 10.1126/science.1225787.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验