Suppr超能文献

tRNA 的异常甲基化将细胞应激与神经发育障碍联系起来。

Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders.

机构信息

Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.

Li Ka Shing Centre, CR-UK Cambridge Institute, University of Cambridge, Cambridge, UK.

出版信息

EMBO J. 2014 Sep 17;33(18):2020-39. doi: 10.15252/embj.201489282. Epub 2014 Jul 25.

Abstract

Mutations in the cytosine-5 RNA methyltransferase NSun2 cause microcephaly and other neurological abnormalities in mice and human. How post-transcriptional methylation contributes to the human disease is currently unknown. By comparing gene expression data with global cytosine-5 RNA methylomes in patient fibroblasts and NSun2-deficient mice, we find that loss of cytosine-5 RNA methylation increases the angiogenin-mediated endonucleolytic cleavage of transfer RNAs (tRNA) leading to an accumulation of 5' tRNA-derived small RNA fragments. Accumulation of 5' tRNA fragments in the absence of NSun2 reduces protein translation rates and activates stress pathways leading to reduced cell size and increased apoptosis of cortical, hippocampal and striatal neurons. Mechanistically, we demonstrate that angiogenin binds with higher affinity to tRNAs lacking site-specific NSun2-mediated methylation and that the presence of 5' tRNA fragments is sufficient and required to trigger cellular stress responses. Furthermore, the enhanced sensitivity of NSun2-deficient brains to oxidative stress can be rescued through inhibition of angiogenin during embryogenesis. In conclusion, failure in NSun2-mediated tRNA methylation contributes to human diseases via stress-induced RNA cleavage.

摘要

胞嘧啶-5 RNA 甲基转移酶 NSun2 中的突变会导致小鼠和人类的小头症和其他神经发育异常。目前尚不清楚转录后甲基化如何导致人类疾病。通过将基因表达数据与患者成纤维细胞和 NSun2 缺陷型小鼠的全胞嘧啶-5 RNA 甲基组进行比较,我们发现胞嘧啶-5 RNA 甲基化的缺失会增加血管生成素介导的 tRNA(转移 RNA)内切酶切割,导致 5' tRNA 衍生的小 RNA 片段积累。在缺乏 NSun2 的情况下,5' tRNA 片段的积累会降低蛋白质翻译率,并激活应激途径,导致皮质、海马和纹状体神经元体积减小和凋亡增加。从机制上讲,我们证明了血管生成素与缺乏特异性 NSun2 介导的甲基化的 tRNA 结合的亲和力更高,并且 5' tRNA 片段的存在足以并且需要引发细胞应激反应。此外,通过在胚胎发生期间抑制血管生成素,可挽救 NSun2 缺陷型大脑对氧化应激的敏感性增加。总之,NSun2 介导的 tRNA 甲基化的失败通过应激诱导的 RNA 切割导致人类疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c50/4195770/3b66dbf28900/embj0033-2020-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验