Suppr超能文献

相似文献

3
Surface and interfacial engineering of iron oxide nanoplates for highly efficient magnetic resonance angiography.
ACS Nano. 2015 Mar 24;9(3):3012-22. doi: 10.1021/nn507193f. Epub 2015 Feb 13.
5
Paramagnetic and Superparamagnetic Inorganic Nanoparticles for T1-Weighted Magnetic Resonance Imaging.
Curr Med Chem. 2018;25(25):2970-2986. doi: 10.2174/0929867324666170314124616.
8
9
Dextran magnetite as a liver contrast agent.
Magn Reson Med. 1991 Jul;20(1):1-16. doi: 10.1002/mrm.1910200102.
10
Ultrasmall Fe@FeO nanoparticles as T-T dual-mode MRI contrast agents for targeted tumor imaging.
Nanomedicine. 2021 Feb;32:102335. doi: 10.1016/j.nano.2020.102335. Epub 2020 Nov 19.

引用本文的文献

1
Principles and applications of magnetic nanomaterials in magnetically guided bioimaging.
Mater Today Phys. 2023 Mar;32. doi: 10.1016/j.mtphys.2023.101003. Epub 2023 Feb 2.
2
Iron Oxide Nanoparticle-Based T Contrast Agents for Magnetic Resonance Imaging: A Review.
Nanomaterials (Basel). 2024 Dec 28;15(1):33. doi: 10.3390/nano15010033.
3
Enzyme-Instructed CBT-Cys-like Click Cyclization Reactions for Bioimaging.
Chem Biomed Imaging. 2023 Dec 31;2(2):98-116. doi: 10.1021/cbmi.3c00117. eCollection 2024 Feb 26.
4
Rational Design of Magnetic Nanoparticles as T-T Dual-Mode MRI Contrast Agents.
Molecules. 2024 Mar 18;29(6):1352. doi: 10.3390/molecules29061352.
5
H-ferritin-nanocaged gadolinium nanoparticles for ultra-sensitive MR molecular imaging.
Theranostics. 2024 Feb 24;14(5):1956-1965. doi: 10.7150/thno.93856. eCollection 2024.
6
Designing Smart Iron Oxide Nanoparticles for MR Imaging of Tumors.
Chem Biomed Imaging. 2023 May 4;1(4):315-339. doi: 10.1021/cbmi.3c00026. eCollection 2023 Jul 24.
7
Magnetic Nanoparticle-Based High-Performance Positive and Negative Magnetic Resonance Imaging Contrast Agents.
Pharmaceutics. 2023 Jun 15;15(6):1745. doi: 10.3390/pharmaceutics15061745.
10
- dual-modal magnetic resonance contrast-enhanced imaging for rat liver fibrosis stage.
RSC Adv. 2022 Dec 14;12(55):35809-35819. doi: 10.1039/d2ra05913d. eCollection 2022 Dec 12.

本文引用的文献

2
Engineered iron-oxide-based nanoparticles as enhanced T1 contrast agents for efficient tumor imaging.
ACS Nano. 2013 Apr 23;7(4):3287-96. doi: 10.1021/nn305991e. Epub 2013 Mar 14.
3
Shape-controlled synthesis of colloidal superparticles from nanocubes.
J Am Chem Soc. 2012 Nov 7;134(44):18225-8. doi: 10.1021/ja308962w. Epub 2012 Oct 30.
5
A synergistically enhanced T(1) -T(2) dual-modal contrast agent.
Adv Mater. 2012 Dec 4;24(46):6223-8. doi: 10.1002/adma.201203169. Epub 2012 Sep 13.
6
Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis.
Nano Lett. 2012 Jul 11;12(7):3716-21. doi: 10.1021/nl301499u. Epub 2012 Jun 21.
7
Water-mediated proton hopping on an iron oxide surface.
Science. 2012 May 18;336(6083):889-93. doi: 10.1126/science.1219468.
8
Biological applications of magnetic nanoparticles.
Chem Soc Rev. 2012 Jun 7;41(11):4306-34. doi: 10.1039/c2cs15337h. Epub 2012 Apr 5.
9
Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents.
Chem Soc Rev. 2012 Apr 7;41(7):2575-89. doi: 10.1039/c1cs15248c. Epub 2011 Dec 2.
10
Receptor-mediated endocytosis of nanoparticles of various shapes.
Nano Lett. 2011 Dec 14;11(12):5391-5. doi: 10.1021/nl2030213. Epub 2011 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验