Department of Life Sciences and Coimbra Chemistry Center (CQC-IMS), Faculty of Science and Technology, University of Coimbra, 3004-531 Coimbra, Portugal.
CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3004-531 Coimbra, Portugal.
Molecules. 2024 Mar 18;29(6):1352. doi: 10.3390/molecules29061352.
Magnetic nanoparticles (MNPs), either paramagnetic or superparamagnetic depending on their composition and size, have been thoroughly studied as magnetic resonance imaging (MRI) contrast agents using in vitro and in vivo biomedical preclinical studies, while some are clinically used. Their magnetic properties responsible in some cases for high magnetization values, together with large surface area-to-volume ratios and the possibility of surface functionalization, have been used in MRI-based diagnostic and theranostics applications. MNPs are usually used as positive (T) or negative (T) MRI contrast agents, causing brightening or darkening of selected regions in MRI images, respectively. This review focusses on recent developments and optimization of MNPs containing Gd, Mn, Fe and other lanthanide ions which may function as dual-mode T-T MRI contrast agents (DMCAs). They induce positive or negative contrast in the same MRI scanner upon changing its operational mode between T-weighted and T-weighted pulse sequences. The type of contrast they induce depends critically on their r/r relaxivity ratio, which for DMCAs should be in the 2-10 range of values. After briefly discussing the basic principles of paramagnetic relaxation in MNPs, in this review, the basic strategies for the rational design of DMCAs are presented and typical examples are discussed, including in vivo preclinical applications: (1) the use of NPs with a single type of contrast material, Gd- or Mn-based NPs or superparamagnetic NPs with appropriate size and magnetization to provide T and T contrast; and (2) inclusion of both types of T and T contrast materials in the same nanoplatform by changing their relative positions.
磁性纳米粒子(MNPs)根据其组成和尺寸可分为顺磁性或超顺磁性,已通过体外和体内生物医学临床前研究作为磁共振成像(MRI)对比剂进行了深入研究,其中一些已在临床上使用。它们的磁性特性在某些情况下导致高磁化值,加上大的表面积与体积比以及表面功能化的可能性,已被用于基于 MRI 的诊断和治疗应用。MNPs 通常用作正(T)或负(T)MRI 对比剂,分别导致 MRI 图像中选定区域的变亮或变暗。本综述重点介绍了含 Gd、Mn、Fe 和其他镧系离子的 MNPs 的最新进展和优化,这些离子可作为双模式 T-T MRI 对比剂(DMCAs)。它们通过在 T 加权和 T 加权脉冲序列之间改变其操作模式,在同一 MRI 扫描仪中引起正或负对比。它们引起的对比类型取决于其 r/r 弛豫率,对于 DMCAs,该值应在 2-10 的范围内。在简要讨论 MNPs 中顺磁弛豫的基本原理后,在本综述中,提出了合理设计 DMCAs 的基本策略,并讨论了典型示例,包括体内临床前应用:(1)使用具有单一类型对比材料的 NPs,即 Gd 或 Mn 基 NPs 或具有适当尺寸和磁化强度的超顺磁性 NPs 提供 T 和 T 对比;和(2)通过改变它们的相对位置,在同一纳米平台中包含两种类型的 T 和 T 对比材料。
Molecules. 2024-3-18
Int J Nanomedicine. 2018-8-10
ACS Appl Bio Mater. 2023-6-19
ACS Appl Mater Interfaces. 2018-11-1
Biotechnol Rep (Amst). 2025-8-12
Sensors (Basel). 2025-7-10
Int J Nanomedicine. 2025-4-28
Nanomaterials (Basel). 2024-12-28
Molecules. 2024-11-26
ACS Appl Mater Interfaces. 2022-11-1
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023-3
Angew Chem Int Ed Engl. 2022-11-25
ACS Appl Bio Mater. 2020-11-16
ACS Appl Mater Interfaces. 2022-1-26
Polymers (Basel). 2021-11-27