文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

作为 T1/T2 双模式 MRI 对比剂的磁性纳米粒子的合理设计。

Rational Design of Magnetic Nanoparticles as T-T Dual-Mode MRI Contrast Agents.

机构信息

Department of Life Sciences and Coimbra Chemistry Center (CQC-IMS), Faculty of Science and Technology, University of Coimbra, 3004-531 Coimbra, Portugal.

CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3004-531 Coimbra, Portugal.

出版信息

Molecules. 2024 Mar 18;29(6):1352. doi: 10.3390/molecules29061352.


DOI:10.3390/molecules29061352
PMID:38542988
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10974227/
Abstract

Magnetic nanoparticles (MNPs), either paramagnetic or superparamagnetic depending on their composition and size, have been thoroughly studied as magnetic resonance imaging (MRI) contrast agents using in vitro and in vivo biomedical preclinical studies, while some are clinically used. Their magnetic properties responsible in some cases for high magnetization values, together with large surface area-to-volume ratios and the possibility of surface functionalization, have been used in MRI-based diagnostic and theranostics applications. MNPs are usually used as positive (T) or negative (T) MRI contrast agents, causing brightening or darkening of selected regions in MRI images, respectively. This review focusses on recent developments and optimization of MNPs containing Gd, Mn, Fe and other lanthanide ions which may function as dual-mode T-T MRI contrast agents (DMCAs). They induce positive or negative contrast in the same MRI scanner upon changing its operational mode between T-weighted and T-weighted pulse sequences. The type of contrast they induce depends critically on their r/r relaxivity ratio, which for DMCAs should be in the 2-10 range of values. After briefly discussing the basic principles of paramagnetic relaxation in MNPs, in this review, the basic strategies for the rational design of DMCAs are presented and typical examples are discussed, including in vivo preclinical applications: (1) the use of NPs with a single type of contrast material, Gd- or Mn-based NPs or superparamagnetic NPs with appropriate size and magnetization to provide T and T contrast; and (2) inclusion of both types of T and T contrast materials in the same nanoplatform by changing their relative positions.

摘要

磁性纳米粒子(MNPs)根据其组成和尺寸可分为顺磁性或超顺磁性,已通过体外和体内生物医学临床前研究作为磁共振成像(MRI)对比剂进行了深入研究,其中一些已在临床上使用。它们的磁性特性在某些情况下导致高磁化值,加上大的表面积与体积比以及表面功能化的可能性,已被用于基于 MRI 的诊断和治疗应用。MNPs 通常用作正(T)或负(T)MRI 对比剂,分别导致 MRI 图像中选定区域的变亮或变暗。本综述重点介绍了含 Gd、Mn、Fe 和其他镧系离子的 MNPs 的最新进展和优化,这些离子可作为双模式 T-T MRI 对比剂(DMCAs)。它们通过在 T 加权和 T 加权脉冲序列之间改变其操作模式,在同一 MRI 扫描仪中引起正或负对比。它们引起的对比类型取决于其 r/r 弛豫率,对于 DMCAs,该值应在 2-10 的范围内。在简要讨论 MNPs 中顺磁弛豫的基本原理后,在本综述中,提出了合理设计 DMCAs 的基本策略,并讨论了典型示例,包括体内临床前应用:(1)使用具有单一类型对比材料的 NPs,即 Gd 或 Mn 基 NPs 或具有适当尺寸和磁化强度的超顺磁性 NPs 提供 T 和 T 对比;和(2)通过改变它们的相对位置,在同一纳米平台中包含两种类型的 T 和 T 对比材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea8e/10974227/95db1dd079ff/molecules-29-01352-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea8e/10974227/d4a1200d996a/molecules-29-01352-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea8e/10974227/f7e57163a1be/molecules-29-01352-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea8e/10974227/6ff25547f53b/molecules-29-01352-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea8e/10974227/36b178addaf3/molecules-29-01352-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea8e/10974227/25465bec9e85/molecules-29-01352-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea8e/10974227/e48df592b46e/molecules-29-01352-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea8e/10974227/57690e294e6c/molecules-29-01352-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea8e/10974227/b29d6a81d6e4/molecules-29-01352-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea8e/10974227/e594f19bfbe5/molecules-29-01352-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea8e/10974227/c76d6098124a/molecules-29-01352-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea8e/10974227/95db1dd079ff/molecules-29-01352-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea8e/10974227/d4a1200d996a/molecules-29-01352-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea8e/10974227/f7e57163a1be/molecules-29-01352-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea8e/10974227/6ff25547f53b/molecules-29-01352-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea8e/10974227/36b178addaf3/molecules-29-01352-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea8e/10974227/25465bec9e85/molecules-29-01352-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea8e/10974227/e48df592b46e/molecules-29-01352-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea8e/10974227/57690e294e6c/molecules-29-01352-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea8e/10974227/b29d6a81d6e4/molecules-29-01352-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea8e/10974227/e594f19bfbe5/molecules-29-01352-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea8e/10974227/c76d6098124a/molecules-29-01352-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea8e/10974227/95db1dd079ff/molecules-29-01352-g011.jpg

相似文献

[1]
Rational Design of Magnetic Nanoparticles as T-T Dual-Mode MRI Contrast Agents.

Molecules. 2024-3-18

[2]
Gadolinium Magnetic Resonance Imaging

2025-1

[3]
Tumor microenvironment responsive - dual-mode contrast agent FeO@ZIF-8-Zn-Mn NPs for magnetic resonance imaging.

J Mater Chem B. 2023-5-17

[4]
Redox ferrocenylseleno compounds modulate longitudinal and transverse relaxation times of FNPs-Gd MRI contrast agents for multimodal imaging and photo-Fenton therapy.

Acta Biomater. 2023-7-1

[5]
Redoxable heteronanocrystals functioning magnetic relaxation switch for activatable T1 and T2 dual-mode magnetic resonance imaging.

Biomaterials. 2016-6-1

[6]
Magnetic Nanoparticle-Based High-Performance Positive and Negative Magnetic Resonance Imaging Contrast Agents.

Pharmaceutics. 2023-6-15

[7]
Targeted dual-contrast T1- and T2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles.

Biomaterials. 2011-3-31

[8]
T-T molecular magnetic resonance imaging of renal carcinoma cells based on nano-contrast agents.

Int J Nanomedicine. 2018-8-10

[9]
High-Performance - Dual-Modal MRI Contrast Agents through Interface Engineering.

ACS Appl Bio Mater. 2023-6-19

[10]
Dual T/ T Nanoscale Coordination Polymers as Novel Contrast Agents for MRI: A Preclinical Study for Brain Tumor.

ACS Appl Mater Interfaces. 2018-11-1

引用本文的文献

[1]
Green nanoscience for healthcare: Advancing biomedical innovation through eco-synthesized nanoparticle.

Biotechnol Rep (Amst). 2025-8-12

[2]
Ultrasmall Superparamagnetic Magnetite Nanoparticles as Glutamate-Responsive Magnetic Resonance Sensors.

Sensors (Basel). 2025-7-10

[3]
Tuneable carbon dots coated iron oxide nanoparticles as superior contrast agent for multimodal imaging.

ADMET DMPK. 2025-6-18

[4]
Bimodal Poly(lactic-co-glycolic acid) Nanocarrier with Zinc Oxide and Iron Oxide for Fluorescence and Magnetic Resonance Imaging.

Molecules. 2025-4-18

[5]
Carbon-Encapsulated Iron Nanoparticles Seeking Integrins in Murine Glioma.

Int J Nanomedicine. 2025-4-28

[6]
The role of manganese-based MRI contrast agents for cancer theranostics: Where do we stand in 2025?

Theranostics. 2025-3-15

[7]
Iron Oxide Nanoparticle-Based T Contrast Agents for Magnetic Resonance Imaging: A Review.

Nanomaterials (Basel). 2024-12-28

[8]
Manganese Oxide Nanoparticles for MRI-Based Multimodal Imaging and Theranostics.

Molecules. 2024-11-26

[9]
Advancements in tantalum based nanoparticles for integrated imaging and photothermal therapy in cancer management.

RSC Adv. 2024-10-23

[10]
Iodinated gadolinium-gold nanomaterial as a multimodal contrast agent for cartilage tissue imaging.

APL Bioeng. 2024-8-19

本文引用的文献

[1]
Magnetic Nanoparticle-Based High-Performance Positive and Negative Magnetic Resonance Imaging Contrast Agents.

Pharmaceutics. 2023-6-15

[2]
Ultrasmall Superparamagnetic Iron Oxide Nanoparticles as Nanocarriers for Magnetic Resonance Imaging: Development and Characterization.

ACS Appl Nano Mater. 2022-7-22

[3]
Hofmeister Effect-Based Dual-Mode MRI and Enhanced Synergistic Therapy of Tumor.

ACS Appl Mater Interfaces. 2022-11-1

[4]
High spin Fe(III)-doped nanostructures as T MR imaging probes.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023-3

[5]
Overcoming Hypoxia-Induced Ferroptosis Resistance via a F/ H-MRI Traceable Core-Shell Nanostructure.

Angew Chem Int Ed Engl. 2022-11-25

[6]
Gadolinium-labelled iron/iron oxide core/shell nanoparticles as - contrast agent for magnetic resonance imaging.

RSC Adv. 2018-7-26

[7]
Tumor Acid Microenvironment-Triggered Self-Assembly of ESIONPs for T/T Switchable Magnetic Resonance Imaging.

ACS Appl Bio Mater. 2020-11-16

[8]
Zwitterion-Coated Ultrasmall MnO Nanoparticles Enable Highly Sensitive -Weighted Contrast-Enhanced Brain Imaging.

ACS Appl Mater Interfaces. 2022-1-26

[9]
Emerging Application of Magnetic Nanoparticles for Diagnosis and Treatment of Cancer.

Polymers (Basel). 2021-11-27

[10]
FeO assembly for tumor accurate diagnosis by endogenous GSH responsive / magnetic relaxation conversion.

J Mater Chem B. 2021-9-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索