Suppr超能文献

鉴于不同生物能量途径在原核生物中的分布不均,F0F1 ATP合酶复合体的进化。

Evolution of the F0F1 ATP synthase complex in light of the patchy distribution of different bioenergetic pathways across prokaryotes.

作者信息

Koumandou Vassiliki Lila, Kossida Sophia

机构信息

Bioinformatics & Medical Informatics Team, Biomedical Research Foundation, Academy of Athens, Athens, Greece.

出版信息

PLoS Comput Biol. 2014 Sep 4;10(9):e1003821. doi: 10.1371/journal.pcbi.1003821. eCollection 2014 Sep.

Abstract

Bacteria and archaea are characterized by an amazing metabolic diversity, which allows them to persist in diverse and often extreme habitats. Apart from oxygenic photosynthesis and oxidative phosphorylation, well-studied processes from chloroplasts and mitochondria of plants and animals, prokaryotes utilize various chemo- or lithotrophic modes, such as anoxygenic photosynthesis, iron oxidation and reduction, sulfate reduction, and methanogenesis. Most bioenergetic pathways have a similar general structure, with an electron transport chain composed of protein complexes acting as electron donors and acceptors, as well as a central cytochrome complex, mobile electron carriers, and an ATP synthase. While each pathway has been studied in considerable detail in isolation, not much is known about their relative evolutionary relationships. Wanting to address how this metabolic diversity evolved, we mapped the distribution of nine bioenergetic modes on a phylogenetic tree based on 16S rRNA sequences from 272 species representing the full diversity of prokaryotic lineages. This highlights the patchy distribution of many pathways across different lineages, and suggests either up to 26 independent origins or 17 horizontal gene transfer events. Next, we used comparative genomics and phylogenetic analysis of all subunits of the F0F1 ATP synthase, common to most bacterial lineages regardless of their bioenergetic mode. Our results indicate an ancient origin of this protein complex, and no clustering based on bioenergetic mode, which suggests that no special modifications are needed for the ATP synthase to work with different electron transport chains. Moreover, examination of the ATP synthase genetic locus indicates various gene rearrangements in the different bacterial lineages, ancient duplications of atpI and of the beta subunit of the F0 subcomplex, as well as more recent stochastic lineage-specific and species-specific duplications of all subunits. We discuss the implications of the overall pattern of conservation and flexibility of the F0F1 ATP synthase genetic locus.

摘要

细菌和古菌的特点是具有惊人的代谢多样性,这使它们能够在多样且往往极端的栖息地中生存。除了植物和动物的叶绿体和线粒体中经过充分研究的有氧光合作用和氧化磷酸化过程外,原核生物还利用各种化学营养或无机营养模式,如无氧光合作用、铁氧化与还原、硫酸盐还原和甲烷生成。大多数生物能量途径具有相似的总体结构,包括由充当电子供体和受体的蛋白质复合物组成的电子传递链,以及一个中央细胞色素复合物、可移动电子载体和一个ATP合酶。虽然每条途径都已被单独详细研究,但对于它们相对的进化关系却知之甚少。为了探究这种代谢多样性是如何进化的,我们基于代表原核生物谱系全多样性的272个物种的16S rRNA序列,在系统发育树上绘制了九种生物能量模式的分布。这突出了许多途径在不同谱系中的零散分布,并表明可能有多达26次独立起源或17次水平基因转移事件。接下来,我们对大多数细菌谱系中常见的F0F1 ATP合酶的所有亚基进行了比较基因组学和系统发育分析,无论它们的生物能量模式如何。我们的结果表明该蛋白质复合物起源古老,并且不存在基于生物能量模式的聚类,这表明ATP合酶与不同的电子传递链一起工作不需要特殊修饰。此外,对ATP合酶基因位点的检查表明,在不同细菌谱系中存在各种基因重排、atpI和F0亚复合物β亚基的古老重复,以及所有亚基最近的随机谱系特异性和物种特异性重复。我们讨论了F0F1 ATP合酶基因位点的保守性和灵活性总体模式的意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99a2/4154653/8baeae369130/pcbi.1003821.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验