Suppr超能文献

酿酒酵母原养型和野生型菌株中的高效基因组编辑及等位基因替换

High-efficiency genome editing and allele replacement in prototrophic and wild strains of Saccharomyces.

作者信息

Alexander William G, Doering Drew T, Hittinger Chris Todd

机构信息

Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin, Madison, Wisconsin 53706 DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin 53706.

Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin, Madison, Wisconsin 53706 Graduate Program in Cellular and Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706.

出版信息

Genetics. 2014 Nov;198(3):859-66. doi: 10.1534/genetics.114.170118. Epub 2014 Sep 9.

Abstract

Current genome editing techniques available for Saccharomyces yeast species rely on auxotrophic markers, limiting their use in wild and industrial strains and species. Taking advantage of the ancient loss of thymidine kinase in the fungal kingdom, we have developed the herpes simplex virus thymidine kinase gene as a selectable and counterselectable marker that forms the core of novel genome engineering tools called the H: aploid E: ngineering and R: eplacement P: rotocol (HERP) cassettes. Here we show that these cassettes allow a researcher to rapidly generate heterogeneous populations of cells with thousands of independent chromosomal allele replacements using mixed PCR products. We further show that the high efficiency of this approach enables the simultaneous replacement of both alleles in diploid cells. Using these new techniques, many of the most powerful yeast genetic manipulation strategies are now available in wild, industrial, and other prototrophic strains from across the diverse Saccharomyces genus.

摘要

目前可用于酿酒酵母属物种的基因组编辑技术依赖于营养缺陷型标记,这限制了它们在野生菌株、工业菌株及其他物种中的应用。利用真菌界古老的胸苷激酶缺失现象,我们开发了单纯疱疹病毒胸苷激酶基因作为一种可选择和反选择标记,该标记构成了名为H: 单倍体E: 工程和R: 替换P: 方案(HERP)盒的新型基因组工程工具的核心。在此我们表明,这些盒式结构使研究人员能够使用混合PCR产物快速生成具有数千个独立染色体等位基因替换的异质细胞群体。我们进一步表明,这种方法的高效率能够在二倍体细胞中同时替换两个等位基因。使用这些新技术,许多最强大的酵母基因操作策略现在可用于来自不同酿酒酵母属的野生、工业和其他原养型菌株。

相似文献

引用本文的文献

9
Current Therapy and Therapeutic Targets for Microsporidiosis.微孢子虫病的当前治疗方法和治疗靶点
Front Microbiol. 2022 Mar 9;13:835390. doi: 10.3389/fmicb.2022.835390. eCollection 2022.
10
Synthetic hybrids of six yeast species.六种酵母物种的合成杂种。
Nat Commun. 2020 Apr 29;11(1):2085. doi: 10.1038/s41467-020-15559-4.

本文引用的文献

9
Saccharomyces diversity and evolution: a budding model genus.酿酒酵母的多样性与进化:一个新兴的模式生物。
Trends Genet. 2013 May;29(5):309-17. doi: 10.1016/j.tig.2013.01.002. Epub 2013 Feb 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验