DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA, 94608, USA.
Sandia National Laboratories, Livermore, CA, USA.
Microb Cell Fact. 2023 Aug 3;22(1):144. doi: 10.1186/s12934-023-02148-5.
Efficient conversion of pentose sugars remains a significant barrier to the replacement of petroleum-derived chemicals with plant biomass-derived bioproducts. While the oleaginous yeast Rhodosporidium toruloides (also known as Rhodotorula toruloides) has a relatively robust native metabolism of pentose sugars compared to other wild yeasts, faster assimilation of those sugars will be required for industrial utilization of pentoses. To increase the rate of pentose assimilation in R. toruloides, we leveraged previously reported high-throughput fitness data to identify potential regulators of pentose catabolism. Two genes were selected for further investigation, a putative transcription factor (RTO4_12978, Pnt1) and a homolog of a glucose transceptor involved in carbon catabolite repression (RTO4_11990). Overexpression of Pnt1 increased the specific growth rate approximately twofold early in cultures on xylose and increased the maximum specific growth by 18% while decreasing accumulation of arabitol and xylitol in fast-growing cultures. Improved growth dynamics on xylose translated to a 120% increase in the overall rate of xylose conversion to fatty alcohols in batch culture. Proteomic analysis confirmed that Pnt1 is a major regulator of pentose catabolism in R. toruloides. Deletion of RTO4_11990 increased the growth rate on xylose, but did not relieve carbon catabolite repression in the presence of glucose. Carbon catabolite repression signaling networks remain poorly characterized in R. toruloides and likely comprise a different set of proteins than those mainly characterized in ascomycete fungi.
戊糖的有效转化仍然是用植物生物质衍生的生物产品替代石油衍生化学品的一个重大障碍。虽然产油酵母 Rhodosporidium toruloides(也称为 Rhodotorula toruloides)与其他野生酵母相比,其戊糖的天然代谢能力相对较强,但为了实现工业利用戊糖,还需要更快地同化这些糖。为了提高 R. toruloides 中戊糖的同化率,我们利用先前报道的高通量适应性数据,鉴定了戊糖分解代谢的潜在调控因子。选择了两个基因进行进一步研究,一个假定的转录因子(RTO4_12978,Pnt1)和一个参与碳分解代谢阻遏的葡萄糖转运体同源物(RTO4_11990)。在木糖培养早期,Pnt1 的过表达使特定生长率提高了约两倍,并使最大比生长率提高了 18%,同时减少了快速生长培养物中阿拉伯糖醇和木糖醇的积累。在木糖上更好的生长动态转化为分批培养中木糖转化为脂肪醇的整体速率提高了 120%。蛋白质组学分析证实,Pnt1 是 R. toruloides 戊糖分解代谢的主要调控因子。RTO4_11990 的缺失提高了木糖上的生长速率,但在葡萄糖存在下并未解除碳分解代谢阻遏。R. toruloides 中的碳分解代谢阻遏信号网络仍未得到很好的描述,并且可能包含与主要在子囊菌真菌中描述的不同的蛋白质。