Suppr超能文献

通过延时发光显微镜测量单细胞中的快速基因动态变化。

Measuring fast gene dynamics in single cells with time-lapse luminescence microscopy.

作者信息

Mazo-Vargas Anyimilehidi, Park Heungwon, Aydin Mert, Buchler Nicolas E

机构信息

Institute for Genome Sciences and Policy, Duke University, Durham, NC 27710 Duke Center for Systems Biology, Duke University, Durham, NC 27710 Department of Biology, Duke University, Durham, NC 27710.

Institute for Genome Sciences and Policy, Duke University, Durham, NC 27710 Duke Center for Systems Biology, Duke University, Durham, NC 27710 Department of Biology, Duke University, Durham, NC 27710 Department of Physics, Duke University, Durham, NC 27710.

出版信息

Mol Biol Cell. 2014 Nov 5;25(22):3699-708. doi: 10.1091/mbc.E14-07-1187. Epub 2014 Sep 17.

Abstract

Time-lapse fluorescence microscopy is an important tool for measuring in vivo gene dynamics in single cells. However, fluorescent proteins are limited by slow chromophore maturation times and the cellular autofluorescence or phototoxicity that arises from light excitation. An alternative is luciferase, an enzyme that emits photons and is active upon folding. The photon flux per luciferase is significantly lower than that for fluorescent proteins. Thus time-lapse luminescence microscopy has been successfully used to track gene dynamics only in larger organisms and for slower processes, for which more total photons can be collected in one exposure. Here we tested green, yellow, and red beetle luciferases and optimized substrate conditions for in vivo luminescence. By combining time-lapse luminescence microscopy with a microfluidic device, we tracked the dynamics of cell cycle genes in single yeast with subminute exposure times over many generations. Our method was faster and in cells with much smaller volumes than previous work. Fluorescence of an optimized reporter (Venus) lagged luminescence by 15-20 min, which is consistent with its known rate of chromophore maturation in yeast. Our work demonstrates that luciferases are better than fluorescent proteins at faithfully tracking the underlying gene expression.

摘要

延时荧光显微镜是用于测量单细胞体内基因动态的重要工具。然而,荧光蛋白受发色团成熟时间缓慢以及光激发产生的细胞自发荧光或光毒性的限制。一种替代方法是荧光素酶,它是一种在折叠时会发光的酶。每个荧光素酶的光子通量明显低于荧光蛋白。因此,延时发光显微镜仅成功用于追踪较大生物体中以及较慢过程中的基因动态,因为在一次曝光中可以收集到更多的总光子。在这里,我们测试了绿色、黄色和红色甲虫荧光素酶,并优化了体内发光的底物条件。通过将延时发光显微镜与微流控装置相结合,我们在许多代中以亚分钟级的曝光时间追踪了单个酵母细胞周期基因的动态。我们的方法比以前的工作更快,且适用于体积小得多的细胞。优化后的报告基因(维纳斯荧光蛋白)的荧光比发光滞后15 - 20分钟,这与其在酵母中已知的发色团成熟速率一致。我们的工作表明,在忠实地追踪潜在基因表达方面,荧光素酶比荧光蛋白更具优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f5b/4230627/84c930f3c641/3699fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验