Suppr超能文献

利用全基因组siRNA细胞表型筛选来表征蛋白质相互作用。

Characterizing protein interactions employing a genome-wide siRNA cellular phenotyping screen.

作者信息

Suratanee Apichat, Schaefer Martin H, Betts Matthew J, Soons Zita, Mannsperger Heiko, Harder Nathalie, Oswald Marcus, Gipp Markus, Ramminger Ellen, Marcus Guillermo, Männer Reinhard, Rohr Karl, Wanker Erich, Russell Robert B, Andrade-Navarro Miguel A, Eils Roland, König Rainer

机构信息

Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangsue, Bangkok, Thailand.

EMBL/CRG Systems Biology Research Unit, Center for Genomic Regulation, Barcelona, Spain.

出版信息

PLoS Comput Biol. 2014 Sep 25;10(9):e1003814. doi: 10.1371/journal.pcbi.1003814. eCollection 2014 Sep.

Abstract

Characterizing the activating and inhibiting effect of protein-protein interactions (PPI) is fundamental to gain insight into the complex signaling system of a human cell. A plethora of methods has been suggested to infer PPI from data on a large scale, but none of them is able to characterize the effect of this interaction. Here, we present a novel computational development that employs mitotic phenotypes of a genome-wide RNAi knockdown screen and enables identifying the activating and inhibiting effects of PPIs. Exemplarily, we applied our technique to a knockdown screen of HeLa cells cultivated at standard conditions. Using a machine learning approach, we obtained high accuracy (82% AUC of the receiver operating characteristics) by cross-validation using 6,870 known activating and inhibiting PPIs as gold standard. We predicted de novo unknown activating and inhibiting effects for 1,954 PPIs in HeLa cells covering the ten major signaling pathways of the Kyoto Encyclopedia of Genes and Genomes, and made these predictions publicly available in a database. We finally demonstrate that the predicted effects can be used to cluster knockdown genes of similar biological processes in coherent subgroups. The characterization of the activating or inhibiting effect of individual PPIs opens up new perspectives for the interpretation of large datasets of PPIs and thus considerably increases the value of PPIs as an integrated resource for studying the detailed function of signaling pathways of the cellular system of interest.

摘要

表征蛋白质-蛋白质相互作用(PPI)的激活和抑制作用对于深入了解人类细胞复杂的信号系统至关重要。已经提出了大量方法来大规模推断PPI,但没有一种方法能够表征这种相互作用的效果。在此,我们提出了一种新的计算方法,该方法利用全基因组RNA干扰敲低筛选的有丝分裂表型,能够识别PPI的激活和抑制作用。例如,我们将我们的技术应用于在标准条件下培养的HeLa细胞的敲低筛选。使用机器学习方法,以6870个已知的激活和抑制PPI作为金标准进行交叉验证,我们获得了较高的准确率(受试者操作特征曲线下面积为82%)。我们预测了HeLa细胞中1954个PPI的从头未知激活和抑制作用,这些PPI涵盖了京都基因与基因组百科全书的十大主要信号通路,并将这些预测结果公开存于一个数据库中。我们最终证明,预测的作用可用于将相似生物学过程的敲低基因聚类到相关亚组中。单个PPI激活或抑制作用的表征为解释大量PPI数据集开辟了新视角,从而显著提高了PPI作为研究目标细胞系统信号通路详细功能的综合资源的价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验