Suppr超能文献

冈比亚按蚊在明暗周期中的视紫红质管理。

Rhodopsin management during the light-dark cycle of Anopheles gambiae mosquitoes.

作者信息

Moon Young Min, Metoxen Alexander J, Leming Matthew T, Whaley Michelle A, O'Tousa Joseph E

机构信息

Department of Biological Sciences, Galvin Life Science Building and the Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA.

Department of Biological Sciences, Galvin Life Science Building and the Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA.

出版信息

J Insect Physiol. 2014 Nov;70:88-93. doi: 10.1016/j.jinsphys.2014.09.006. Epub 2014 Sep 29.

Abstract

The tropical disease vector mosquito Anopheles gambiae possesses 11 rhodopsin genes. Three of these, GPROP1, GPROP3, and GPROP4, encode rhodopsins with >99% sequence identity. We created antisera against these rhodopsins and used immunohistology to show that one or more of these rhodopsins are expressed in the major R1-6 photoreceptor class of the adult A.gambiae eye. Under dark conditions, rhodopsin accumulates within the light-sensitive rhabdomere of the photoreceptor. Light treatment, however, causes extensive movement of rhodopsin to the cytoplasmic compartment. Protein electrophoresis showed that the rhodopsin is present in two different forms. The larger form is an immature species that is deglycosylated during the posttranslational maturation process to generate the smaller, mature form. The immature form is maintained at a constant level regardless of lighting conditions. These results indicate that rhodopsin biosynthesis and movement into the rhabdomere occurs at a constant rate. In contrast, the mature form increases in abundance when animals are placed in dark conditions. Light-triggered internalization and protein degradation counteracts this rhodopsin increase and keeps rhabdomeric rhodopsin levels low in light conditions. The interplay of the constant maturation rate with light-triggered degradation causes rhodopsin to accumulate within the rhabdomere only in dark conditions. Thus, Anopheles photoreceptors possess a mechanism for adjusting light sensitivity through light-dependent control of rhodopsin levels and cellular location.

摘要

热带病媒介蚊子冈比亚按蚊拥有11个视紫红质基因。其中三个,即GPROP1、GPROP3和GPROP4,编码的视紫红质序列同一性大于99%。我们制备了针对这些视紫红质的抗血清,并利用免疫组织学方法证明这些视紫红质中的一种或多种在成年冈比亚按蚊眼睛的主要R1-6光感受器类别中表达。在黑暗条件下,视紫红质在光感受器的光敏微绒毛内积累。然而,光照处理会导致视紫红质大量转移到细胞质区室。蛋白质电泳显示视紫红质以两种不同形式存在。较大的形式是未成熟物种,在翻译后成熟过程中去糖基化以产生较小的成熟形式。无论光照条件如何,未成熟形式都保持在恒定水平。这些结果表明视紫红质的生物合成和向微绒毛的移动以恒定速率发生。相比之下,当动物置于黑暗条件下时,成熟形式的丰度会增加。光触发的内化和蛋白质降解抵消了这种视紫红质的增加,并使微绒毛视紫红质水平在光照条件下保持较低。恒定成熟速率与光触发降解之间的相互作用导致视紫红质仅在黑暗条件下在微绒毛内积累。因此,冈比亚按蚊光感受器拥有一种通过光依赖控制视紫红质水平和细胞位置来调节光敏感性的机制。

相似文献

1
Rhodopsin management during the light-dark cycle of Anopheles gambiae mosquitoes.
J Insect Physiol. 2014 Nov;70:88-93. doi: 10.1016/j.jinsphys.2014.09.006. Epub 2014 Sep 29.
2
Light-Driven Processes Control Both Rhodopsin Maturation and Recycling in Mosquito Photoreceptors.
J Neurosci. 2016 Oct 26;36(43):11051-11058. doi: 10.1523/JNEUROSCI.1754-16.2016.
3
Rhodopsin coexpression in UV photoreceptors of Aedes aegypti and Anopheles gambiae mosquitoes.
J Exp Biol. 2014 Mar 15;217(Pt 6):1003-8. doi: 10.1242/jeb.096347. Epub 2013 Dec 5.
4
The Drosophila rhodopsin cytoplasmic tail domain is required for maintenance of rhabdomere structure.
FASEB J. 2007 Feb;21(2):449-55. doi: 10.1096/fj.06-6530com. Epub 2006 Dec 11.
5
Light-mediated control of rhodopsin movement in mosquito photoreceptors.
J Neurosci. 2012 Oct 3;32(40):13661-7. doi: 10.1523/JNEUROSCI.1816-12.2012.
6
Expression and light-triggered movement of rhodopsins in the larval visual system of mosquitoes.
J Exp Biol. 2015 May;218(Pt 9):1386-92. doi: 10.1242/jeb.111526. Epub 2015 Mar 6.
9
Metarhodopsin control by arrestin, light-filtering screening pigments, and visual pigment turnover in invertebrate microvillar photoreceptors.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2011 Mar;197(3):227-41. doi: 10.1007/s00359-010-0604-7. Epub 2010 Nov 3.

引用本文的文献

1
Effects of circadian clock disruption on gene expression and biological processes in Aedes aegypti.
BMC Genomics. 2024 Feb 13;25(1):170. doi: 10.1186/s12864-024-10078-8.
3
Sleep: An Essential and Understudied Process in the Biology of Blood-Feeding Arthropods.
Integr Comp Biol. 2023 Sep 15;63(3):530-547. doi: 10.1093/icb/icad097.
4
Opsin1 regulates light-evoked avoidance behavior in Aedes albopictus.
BMC Biol. 2022 May 13;20(1):110. doi: 10.1186/s12915-022-01308-0.
5
A handmade trap for malaria mosquito surveillance by citizens in Rwanda.
PLoS One. 2022 May 11;17(5):e0266714. doi: 10.1371/journal.pone.0266714. eCollection 2022.
6
Multimodal synergisms in host stimuli drive landing response in malaria mosquitoes.
Sci Rep. 2021 Apr 1;11(1):7379. doi: 10.1038/s41598-021-86772-4.
7
Different as night and day: Behavioural and life history responses to varied photoperiods in Daphnia magna.
Mol Ecol. 2019 Oct;28(19):4422-4438. doi: 10.1111/mec.15230. Epub 2019 Sep 26.
8
Olfaction, experience and neural mechanisms underlying mosquito host preference.
J Exp Biol. 2018 Feb 27;221(Pt 4):jeb157131. doi: 10.1242/jeb.157131.
9
Genetic Analysis of Mosquito Detection of Humans.
Curr Opin Insect Sci. 2017 Apr;20:34-38. doi: 10.1016/j.cois.2017.03.003.
10
Insect photoreceptor adaptations to night vision.
Philos Trans R Soc Lond B Biol Sci. 2017 Apr 5;372(1717). doi: 10.1098/rstb.2016.0077.

本文引用的文献

1
Light-mediated control of rhodopsin movement in mosquito photoreceptors.
J Neurosci. 2012 Oct 3;32(40):13661-7. doi: 10.1523/JNEUROSCI.1816-12.2012.
2
Characterization of multiple light damage paradigms reveals regional differences in photoreceptor loss.
Exp Eye Res. 2012 Apr;97(1):105-16. doi: 10.1016/j.exer.2012.02.004. Epub 2012 Mar 9.
3
Genome-wide profiling of diel and circadian gene expression in the malaria vector Anopheles gambiae.
Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):E421-30. doi: 10.1073/pnas.1100584108. Epub 2011 Jun 29.
4
Episodic radiations in the fly tree of life.
Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5690-5. doi: 10.1073/pnas.1012675108. Epub 2011 Mar 14.
6
Genome sequence of Aedes aegypti, a major arbovirus vector.
Science. 2007 Jun 22;316(5832):1718-23. doi: 10.1126/science.1138878. Epub 2007 May 17.
7
Regulation of receptor trafficking by GRKs and arrestins.
Annu Rev Physiol. 2007;69:451-82. doi: 10.1146/annurev.physiol.69.022405.154712.
8
An essential role for endocytosis of rhodopsin through interaction of visual arrestin with the AP-2 adaptor.
J Cell Sci. 2006 Aug 1;119(Pt 15):3141-8. doi: 10.1242/jcs.03052. Epub 2006 Jul 11.
10
Arrestin1 mediates light-dependent rhodopsin endocytosis and cell survival.
Curr Biol. 2005 Oct 11;15(19):1722-33. doi: 10.1016/j.cub.2005.08.064.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验