Retico Alessandra, Bosco Paolo, Cerello Piergiorgio, Fiorina Elisa, Chincarini Andrea, Fantacci Maria Evelina
Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Pisa, Italy.
Dipartimento di Fisica, Università degli Studi di Genova, Genova, Italy.
J Neuroimaging. 2015 Jul-Aug;25(4):552-63. doi: 10.1111/jon.12163. Epub 2014 Oct 7.
Decision-making systems trained on structural magnetic resonance imaging data of subjects affected by the Alzheimer's disease (AD) and healthy controls (CTRL) are becoming widespread prognostic tools for subjects with mild cognitive impairment (MCI). This study compares the performances of three classification methods based on support vector machines (SVMs), using as initial sets of brain voxels (ie, features): (1) the segmented grey matter (GM); (2) regions of interest (ROIs) by voxel-wise t-test filtering; (3) parceled ROIs, according to prior knowledge. The recursive feature elimination (RFE) is applied in all cases to investigate whether feature reduction improves the classification accuracy. We analyzed more than 600 AD Neuroimaging Initiative (ADNI) subjects, training the SVMs on the AD/CTRL dataset, and evaluating them on a trial MCI dataset. The classification performance, evaluated as the area under the receiver operating characteristic curve (AUC), reaches AUC = (88.9 ± .5)% in 20-fold cross-validation on the AD/CTRL dataset, when the GM is classified as a whole. The highest discrimination accuracy between MCI converters and nonconverters is achieved when the SVM-RFE is applied to the whole GM: with AUC reaching (70.7 ± .9)%, it outperforms both ROI-based approaches in predicting the AD conversion.
基于阿尔茨海默病(AD)患者和健康对照(CTRL)的结构磁共振成像数据训练的决策系统,正成为轻度认知障碍(MCI)患者广泛使用的预后工具。本研究比较了基于支持向量机(SVM)的三种分类方法的性能,使用脑体素(即特征)的初始集:(1)分割后的灰质(GM);(2)通过体素级t检验滤波得到的感兴趣区域(ROI);(3)根据先验知识划分的ROI。在所有情况下均应用递归特征消除(RFE)来研究特征约简是否能提高分类准确率。我们分析了600多名阿尔茨海默病神经影像学倡议(ADNI)受试者,在AD/CTRL数据集上训练SVM,并在一个试验性MCI数据集上对其进行评估。当将GM作为一个整体进行分类时,在AD/CTRL数据集的20折交叉验证中,以受试者工作特征曲线下面积(AUC)评估的分类性能达到AUC =(88.9±0.5)%。当将SVM-RFE应用于整个GM时,在MCI转化者和非转化者之间实现了最高的判别准确率:AUC达到(70.7±0.9)%,在预测AD转化方面优于两种基于ROI的方法。