Suppr超能文献

细菌运动模式揭示了在海洋微生境中利用而非探索的重要性。第一部分:理论。

Bacterial motility patterns reveal importance of exploitation over exploration in marine microhabitats. Part I: theory.

作者信息

Xie Li, Wu Xiao-Lun

机构信息

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania.

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania.

出版信息

Biophys J. 2014 Oct 7;107(7):1712-20. doi: 10.1016/j.bpj.2014.07.058.

Abstract

Bacteria use different motility patterns to navigate and explore natural habitats. However, how these motility patterns are selected, and what their benefits may be, are not understood. In this article, we analyze the effect of motility patterns on a cell's ability to migrate in a chemical gradient and to localize at the top of the gradient, the two most important characteristics of bacterial chemotaxis. We will focus on two motility patterns, run-tumble and run-reverse-flick, that are observed and characterized in enteric bacterium Escherichia coli and marine bacterium Vibrio alginolyticus, respectively. To make an objective comparison, master equations are developed on the basis of microscopic motions of the bacteria. An unexpected yet significant result is that by adopting the run-reverse-flick motility pattern, a bacterium can reduce its diffusivity without compromising its drift in the chemical gradient. This finding is biologically important as it suggests that the motility pattern can improve a microorganism's ability to sequester nutrients in a competitive environment.

摘要

细菌利用不同的运动模式在自然栖息地中导航和探索。然而,这些运动模式是如何被选择的,以及它们可能有什么益处,目前尚不清楚。在本文中,我们分析了运动模式对细胞在化学梯度中迁移以及定位在梯度顶端能力的影响,这是细菌趋化性的两个最重要特征。我们将重点关注两种运动模式,即“游动-翻滚”和“游动-反向-轻弹”,它们分别在肠道细菌大肠杆菌和海洋细菌溶藻弧菌中被观察到并进行了特征描述。为了进行客观比较,基于细菌的微观运动建立了主方程。一个意外但重要的结果是,通过采用“游动-反向-轻弹”运动模式,细菌可以在不影响其在化学梯度中漂移的情况下降低其扩散率。这一发现具有生物学重要性,因为它表明运动模式可以提高微生物在竞争环境中获取营养的能力。

相似文献

5
Speed-dependent chemotactic precision in marine bacteria.海洋细菌中与速度相关的趋化精度。
Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):8624-9. doi: 10.1073/pnas.1602307113. Epub 2016 Jul 20.
9
Reverse and flick: Hybrid locomotion in bacteria.反转与轻弹:细菌中的混合运动
Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2635-6. doi: 10.1073/pnas.1019199108. Epub 2011 Feb 2.

引用本文的文献

2
Light Control in Microbial Systems.微生物系统中的光控制。
Int J Mol Sci. 2024 Apr 3;25(7):4001. doi: 10.3390/ijms25074001.
7
Quorum Sensing Behavior in the Model Unicellular Eukaryote .模式单细胞真核生物中的群体感应行为
iScience. 2020 Oct 21;23(11):101714. doi: 10.1016/j.isci.2020.101714. eCollection 2020 Nov 20.
10
Speed-dependent chemotactic precision in marine bacteria.海洋细菌中与速度相关的趋化精度。
Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):8624-9. doi: 10.1073/pnas.1602307113. Epub 2016 Jul 20.

本文引用的文献

2
Bacterial chemotaxis in an optical trap.细菌在光阱中的趋化性。
PLoS One. 2011 Apr 8;6(4):e18231. doi: 10.1371/journal.pone.0018231.
5
Bacterial strategies for chemotaxis response.细菌的趋化反应策略。
Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1391-6. doi: 10.1073/pnas.0909673107. Epub 2010 Jan 4.
6
Logarithmic sensing in Escherichia coli bacterial chemotaxis.大肠杆菌趋化作用中的对数感应
Biophys J. 2009 Mar 18;96(6):2439-48. doi: 10.1016/j.bpj.2008.10.027.
10
Chemotaxis: the role of internal delays.趋化性:内部延迟的作用。
Eur Biophys J. 2004 Dec;33(8):691-3. doi: 10.1007/s00249-004-0426-z. Epub 2004 Jul 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验