Suppr超能文献

在 MoS(2) 纳米片中利用原位生长的金纳米颗粒制造 SERS 热点。

Creating SERS hot spots on MoS(2) nanosheets with in situ grown gold nanoparticles.

机构信息

Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210046, China.

出版信息

ACS Appl Mater Interfaces. 2014;6(21):18735-41. doi: 10.1021/am5043092. Epub 2014 Oct 23.

Abstract

Herein, a reliable surface-enhanced Raman scattering (SERS)-active substrate has been prepared by synthesizing gold nanoparticles (AuNPs)-decorated MoS2 nanocomposite. The AuNPs grew in situ on the surface of MoS2 nanosheet to form efficient SERS hot spots by a spontaneous redox reaction with tetrachloroauric acid (HAuCl4) without any reducing agent. The morphologies of MoS2 and AuNPs-decorated MoS2 nanosheet were characterized by TEM, HRTEM, and AFM. The formation of hot spots greatly depended on the ratio of MoS2 and HAuCl4. When the concentration of HAuCl4 was 2.4 mM, the as-prepared AuNPs@MoS2-3 nanocomposite exhibited a high-quality SERS activity toward probe molecule due to the generated hot spots. The spot-to-spot SERS signals showed that the relative standard deviation (RSD) in the intensity of the main Raman vibration modes (1362, 1511, and 1652 cm(-1)) of Rhodamine 6G were about 20%, which displayed good uniformity and reproducibility. The AuNPs@MoS2-based substrate was reliable, sensitive, and reproducible, which showed great potential to be an excellent SERS substrate for biological and chemical detection.

摘要

在此,通过合成金纳米粒子(AuNPs)修饰的 MoS2 纳米复合材料,制备了一种可靠的表面增强拉曼散射(SERS)活性基底。AuNPs 通过与四氯金酸(HAuCl4)的自发氧化还原反应在 MoS2 纳米片表面原位生长,形成有效的 SERS 热点,而无需任何还原剂。MoS2 和 AuNPs 修饰的 MoS2 纳米片的形态通过 TEM、HRTEM 和 AFM 进行了表征。热点的形成极大地取决于 MoS2 和 HAuCl4 的比例。当 HAuCl4 的浓度为 2.4 mM 时,由于产生的热点,所制备的 AuNPs@MoS2-3 纳米复合材料对探针分子表现出了高质量的 SERS 活性。斑点到斑点的 SERS 信号表明,罗丹明 6G 的主要拉曼振动模式(1362、1511 和 1652 cm(-1))的强度的相对标准偏差(RSD)约为 20%,显示出良好的均匀性和重现性。基于 AuNPs@MoS2 的基底可靠、灵敏且重现性好,显示出在生物和化学检测中作为优秀 SERS 基底的巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验