文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Development of amperometric glucose biosensor based on Prussian Blue functionlized TiO2 nanotube arrays.

作者信息

Gao Zhi-Da, Qu Yongfang, Li Tongtong, Shrestha Nabeen K, Song Yan-Yan

机构信息

1] College of Sciences, Northeastern University, Shenyang 110004, China [2] National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China.

College of Sciences, Northeastern University, Shenyang 110004, China.

出版信息

Sci Rep. 2014 Nov 4;4:6891. doi: 10.1038/srep06891.


DOI:10.1038/srep06891
PMID:25367086
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4219169/
Abstract

Amperometric biosensors consisting of oxidase and peroxidase have attracted great attention because of their wide application. The current work demonstrates a novel approach to construct an enzymatic biosensor based on TiO2 nanotube arrays (TiNTs) as a supporting electrode on which Prussian Blue (PB)-an "artificial enzyme peroxidase" and enzyme glucose oxidase (GOx) have been immobilized. For this, PB nanocrystals are deposited onto the nanotube wall photocatalytically using the intrinsic photocatalytical property of TiO2, and the GOx/AuNPs nanobiocomposites are subsequently immobilized into the nanotubes via the electrodeposition of polymer. The resulting electrode exhibits a fast response, wide linear range, and good stability for glucose sensing. The sensitivity of the sensor is as high as 248 mA M(-1) cm(-2), and the detection limit is about 3.2 μM. These findings demonstrate a promising strategy to integrate enzymes and TiNTs, which could provide an analytical access to a large group of enzymes for bioelectrochemical applications including biosensors and biofuel cells.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec24/4219169/4404cdf59d14/srep06891-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec24/4219169/7170d4fe9a08/srep06891-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec24/4219169/f0bb19f10a15/srep06891-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec24/4219169/23e9ed395aa3/srep06891-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec24/4219169/2f010712feb4/srep06891-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec24/4219169/4404cdf59d14/srep06891-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec24/4219169/7170d4fe9a08/srep06891-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec24/4219169/f0bb19f10a15/srep06891-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec24/4219169/23e9ed395aa3/srep06891-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec24/4219169/2f010712feb4/srep06891-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec24/4219169/4404cdf59d14/srep06891-f5.jpg

相似文献

[1]
Development of amperometric glucose biosensor based on Prussian Blue functionlized TiO2 nanotube arrays.

Sci Rep. 2014-11-4

[2]
Electrochemical performance and biosensor application of TiO2 nanotube arrays with mesoporous structures constructed by chemical etching.

Dalton Trans. 2015-4-28

[3]
Facile synthesis of tetragonal columnar-shaped TiO2 nanorods for the construction of sensitive electrochemical glucose biosensor.

Biosens Bioelectron. 2013-11-23

[4]
A glucose biosensor based on Prussian blue/chitosan hybrid film.

Biosens Bioelectron. 2009-1-1

[5]
Smartphone-enabled flow injection amperometric glucose monitoring based on a screen-printed carbon electrode modified with PEDOT@PB and a GOx@PPtNPs@MWCNTs nanocomposite.

Talanta. 2024-9-1

[6]
An amperometric glucose biosensor based on titania sol-gel/Prussian Blue composite film.

Anal Sci. 2008

[7]
Efficient immobilization of glucose oxidase by in situ photo-cross-linking for glucose biosensing.

Talanta. 2012-5-8

[8]
"Green" Prussian Blue Analogues as Peroxidase Mimetics for Amperometric Sensing and Biosensing.

Biosensors (Basel). 2021-6-10

[9]
DNA as a support for glucose oxidase immobilization at Prussian blue-modified glassy carbon electrode in biosensor preparation.

J Nanosci Nanotechnol. 2006-11

[10]
A stable and controllable Prussian blue layer electrodeposited on self-assembled monolayers for constructing highly sensitive glucose biosensor.

Analyst. 2010-6-1

引用本文的文献

[1]
Prussian-Blue Catalysis and NFC Synergy: a Battery-Free Laser-Induced Graphene-Based Platform for Urine Glucose Monitoring at Point-of-Care.

Adv Sci (Weinh). 2025-5

[2]
Towards a Self-Powered Amperometric Glucose Biosensor Based on a Single-Enzyme Biofuel Cell.

Biosensors (Basel). 2024-3-8

[3]
Cu and Ni Co-sputtered heteroatomic thin film for enhanced nonenzymatic glucose detection.

Sci Rep. 2022-5-7

[4]
Insights into Theranostic Properties of Titanium Dioxide for Nanomedicine.

Nanomicro Lett. 2020-1-14

[5]
The Influence of the Parameters of a Gold Nanoparticle Deposition Method on Titanium Dioxide Nanotubes, Their Electrochemical Response, and Protein Adsorption.

Biosensors (Basel). 2019-11-20

[6]
Non-enzymatic glucose sensor with electrodeposited silver/carbon nanotubes composite electrode.

Biosci Rep. 2019-6-25

[7]
MOMSense: Metal-Oxide-Metal Elementary Glucose Sensor.

Sci Rep. 2019-4-2

[8]
Analytical Parameters of an Amperometric Glucose Biosensor for Fast Analysis in Food Samples.

Sensors (Basel). 2017-11-14

[9]
A Third Generation Glucose Biosensor Based on Cellobiose Dehydrogenase Immobilized on a Glassy Carbon Electrode Decorated with Electrodeposited Gold Nanoparticles: Characterization and Application in Human Saliva.

Sensors (Basel). 2017-8-18

[10]
Palladium nanoparticles entrapped in a self-supporting nanoporous gold wire as sensitive dopamine biosensor.

Sci Rep. 2017-8-11

本文引用的文献

[1]
Functionalized single-walled carbon nanotubes/polypyrrole composites for amperometric glucose biosensors.

Nanoscale Res Lett. 2013-7-9

[2]
Biotemplated synthesis of Au nanoparticles-TiO2 nanotube junctions for enhanced direct electrochemistry of heme proteins.

Chem Commun (Camb). 2013-1-28

[3]
Development of amperometric lysine biosensors based on Au nanoparticles/multiwalled carbon nanotubes/polymers modified Au electrodes.

Analyst. 2012-9-18

[4]
Effects of calcination temperature on microstructures and photocatalytic activity of titanate nanotube films prepared by an EPD method.

Nanotechnology. 2008-1-30

[5]
Dual signal amplification of glucose oxidase-functionalized nanocomposites as a trace label for ultrasensitive simultaneous multiplexed electrochemical detection of tumor markers.

Anal Chem. 2009-12-1

[6]
Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MO(x) structures.

Chem Commun (Camb). 2009-5-28

[7]
Fabrication of a glucose sensor based on a novel nanocomposite electrode.

Biosens Bioelectron. 2009-2-15

[8]
Direct electrochemistry of horseradish peroxidase on TiO(2) nanotube arrays via seeded-growth synthesis.

Biosens Bioelectron. 2008-10-15

[9]
Fabrication of bienzyme nanobiocomposite electrode using functionalized carbon nanotubes for biosensing applications.

Biosens Bioelectron. 2008-6-15

[10]
Coadsorption of horseradish peroxidase with thionine on TiO2 nanotubes for biosensing.

Langmuir. 2005-8-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索