Suppr超能文献

使用光学迭代技术检测组织中的纳米颗粒。

Detecting nanoparticles in tissue using an optical iterative technique.

作者信息

Yariv Inbar, Rahamim Gilad, Shliselberg Elad, Duadi Hamootal, Lipovsky Anat, Lubart Rachel, Fixler Dror

机构信息

Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel.

Physics and Chemistry Department, Bar-Ilan University, Ramat-Gan 5290002, Israel.

出版信息

Biomed Opt Express. 2014 Oct 10;5(11):3871-81. doi: 10.1364/BOE.5.003871. eCollection 2014 Nov 1.

Abstract

Determining the physical penetration depth of nanoparticles (NPs) into tissues is a challenge that many researchers have been facing in recent years. This paper presents a new noninvasive method for detecting NPs in tissue using an optical iterative technique based on the Gerchberg-Saxton (G-S) algorithm. At the end of this algorithm the reduced scattering coefficient (µs'), of a given substance, can be estimated from the standard deviation (STD) of the retrieved phase of the remitted light. Presented in this paper are the results of a tissue simulation which indicate a linear ratio between the STD and the scattering components. A linear ratio was also observed in the tissue-like phantoms and in ex vivo experiments with and without NPs (Gold nanorods and nano Methylene Blue). The proposed technique is the first step towards determining the physical penetration depth of NPs.

摘要

确定纳米颗粒(NPs)在组织中的物理穿透深度是近年来许多研究人员一直面临的挑战。本文提出了一种基于格尔奇伯格 - 萨克斯顿(G - S)算法的光学迭代技术,用于在组织中检测纳米颗粒的新型非侵入性方法。在该算法结束时,可以从发射光的检索相位的标准偏差(STD)估计给定物质的约化散射系数(µs')。本文展示了组织模拟的结果,这些结果表明STD与散射成分之间存在线性比例关系。在类组织体模以及有和没有纳米颗粒(金纳米棒和纳米亚甲蓝)的离体实验中也观察到了线性比例关系。所提出的技术是确定纳米颗粒物理穿透深度的第一步。

相似文献

1
Detecting nanoparticles in tissue using an optical iterative technique.
Biomed Opt Express. 2014 Oct 10;5(11):3871-81. doi: 10.1364/BOE.5.003871. eCollection 2014 Nov 1.
2
3
Detecting concentrations of milk components by an iterative optical technique.
J Biophotonics. 2015 Nov;8(11-12):979-84. doi: 10.1002/jbio.201400144. Epub 2015 Feb 26.
4
Noninvasive Nanodiamond Skin Permeation Profiling Using a Phase Analysis Method: Experiments.
ACS Nano. 2022 Oct 25;16(10):15760-15769. doi: 10.1021/acsnano.2c03613. Epub 2022 Aug 29.
5
Nanoparticle-free tissue-mimicking phantoms with intrinsic scattering.
Biomed Opt Express. 2016 May 4;7(6):2088-94. doi: 10.1364/BOE.7.002088. eCollection 2016 Jun 1.
7
8
Real time evaluation of tissue optical properties during thermal ablation of ex vivo liver tissues.
Int J Hyperthermia. 2019 Jan 1;35(1):176-182. doi: 10.1080/02656736.2018.1488278. Epub 2018 Aug 21.
9
Pixel-wise estimation of noise statistics on iterative CT reconstruction from a single scan.
Med Phys. 2017 Jul;44(7):3525-3533. doi: 10.1002/mp.12302. Epub 2017 Jun 1.
10
Holographic near-eye display system based on double-convergence light Gerchberg-Saxton algorithm.
Opt Express. 2018 Apr 16;26(8):10140-10151. doi: 10.1364/OE.26.010140.

引用本文的文献

3
Iterative optical technique for detecting anti-leishmania nanoparticles in mouse lesions.
Biomed Opt Express. 2021 Jun 28;12(7):4496-4509. doi: 10.1364/BOE.425798. eCollection 2021 Jul 1.
5
Media Characterization under Scattering Conditions by Nanophotonics Iterative Multiplane Spectroscopy Measurements.
ACS Omega. 2019 Aug 22;4(10):14301-14306. doi: 10.1021/acsomega.9b01976. eCollection 2019 Sep 3.
6
Algorithm for detection of tissue type from multiple scattering light phase images.
Biomed Opt Express. 2019 May 21;10(6):2909-2917. doi: 10.1364/BOE.10.002909. eCollection 2019 Jun 1.
7
8
Enhanced pharmacological activity of vitamin B₁₂ and penicillin as nanoparticles.
Int J Nanomedicine. 2015 May 15;10:3593-601. doi: 10.2147/IJN.S82482. eCollection 2015.

本文引用的文献

2
Linear dependency of full scattering profile isobaric point on tissue diameter.
J Biomed Opt. 2014 Feb;19(2):026007. doi: 10.1117/1.JBO.19.2.026007.
3
Laser speckle contrast imaging with extended depth of field for in-vivo tissue imaging.
Biomed Opt Express. 2013 Dec 6;5(1):123-35. doi: 10.1364/BOE.5.000123.
4
In vivo tumor detection using polarization and wavelength reflection characteristics of gold nanorods.
Nano Lett. 2013;13(12):6292-6. doi: 10.1021/nl403927c. Epub 2013 Nov 25.
6
Optical properties of biological tissues: a review.
Phys Med Biol. 2013 Jun 7;58(11):R37-61. doi: 10.1088/0031-9155/58/11/R37. Epub 2013 May 10.
7
Subcutaneous gold nanorods [corrected] detection with diffusion reflection measurement.
J Biomed Opt. 2013 Jun;18(6):61226. doi: 10.1117/1.JBO.18.6.061226.
8
Optical properties of human skin.
J Biomed Opt. 2012 Sep;17(9):90901-1. doi: 10.1117/1.JBO.17.9.090901.
9
Rapid monitoring of cerebral ischemia dynamics using laser-based optical imaging of blood oxygenation and flow.
Biomed Opt Express. 2012 Apr 1;3(4):777-91. doi: 10.1364/BOE.3.000777. Epub 2012 Mar 27.
10
A new method for cancer detection based on diffusion reflection measurements of targeted gold nanorods.
Int J Nanomedicine. 2012;7:449-55. doi: 10.2147/IJN.S28424. Epub 2012 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验