Zhang Miao, D'Aniello Cristina, Verkerk Arie O, Wrobel Eva, Frank Stefan, Ward-van Oostwaard Dorien, Piccini Ilaria, Freund Christian, Rao Jyoti, Seebohm Guiscard, Atsma Douwe E, Schulze-Bahr Eric, Mummery Christine L, Greber Boris, Bellin Milena
Human Stem Cell Pluripotency Group, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany; Chemical Genomics Centre of the Max Planck Society, 44227 Dortmund, Germany; Departments of.
Anatomy and Embryology and.
Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):E5383-92. doi: 10.1073/pnas.1419553111. Epub 2014 Dec 1.
Jervell and Lange-Nielsen syndrome (JLNS) is one of the most severe life-threatening cardiac arrhythmias. Patients display delayed cardiac repolarization, associated high risk of sudden death due to ventricular tachycardia, and congenital bilateral deafness. In contrast to the autosomal dominant forms of long QT syndrome, JLNS is a recessive trait, resulting from homozygous (or compound heterozygous) mutations in KCNQ1 or KCNE1. These genes encode the α and β subunits, respectively, of the ion channel conducting the slow component of the delayed rectifier K(+) current, IKs. We used complementary approaches, reprogramming patient cells and genetic engineering, to generate human induced pluripotent stem cell (hiPSC) models of JLNS, covering splice site (c.478-2A>T) and missense (c.1781G>A) mutations, the two major classes of JLNS-causing defects in KCNQ1. Electrophysiological comparison of hiPSC-derived cardiomyocytes (CMs) from homozygous JLNS, heterozygous, and wild-type lines recapitulated the typical and severe features of JLNS, including pronounced action and field potential prolongation and severe reduction or absence of IKs. We show that this phenotype had distinct underlying molecular mechanisms in the two sets of cell lines: the previously unidentified c.478-2A>T mutation was amorphic and gave rise to a strictly recessive phenotype in JLNS-CMs, whereas the missense c.1781G>A lesion caused a gene dosage-dependent channel reduction at the cell membrane. Moreover, adrenergic stimulation caused action potential prolongation specifically in JLNS-CMs. Furthermore, sensitivity to proarrhythmic drugs was strongly enhanced in JLNS-CMs but could be pharmacologically corrected. Our data provide mechanistic insight into distinct classes of JLNS-causing mutations and demonstrate the potential of hiPSC-CMs in drug evaluation.
耶尔韦尔和朗格-尼尔森综合征(JLNS)是最严重的危及生命的心律失常之一。患者表现出心脏复极化延迟,因室性心动过速导致猝死的风险较高,以及先天性双侧耳聋。与常染色体显性形式的长QT综合征不同,JLNS是一种隐性性状,由KCNQ1或KCNE1中的纯合(或复合杂合)突变引起。这些基因分别编码传导延迟整流钾电流(IKs)慢成分的离子通道的α和β亚基。我们采用互补方法,对患者细胞进行重编程和基因工程,以生成JLNS的人类诱导多能干细胞(hiPSC)模型,涵盖剪接位点(c.478-2A>T)和错义(c.1781G>A)突变,这是KCNQ1中导致JLNS的两类主要缺陷。对来自纯合JLNS、杂合和野生型细胞系的hiPSC衍生心肌细胞(CMs)进行电生理比较,再现了JLNS的典型和严重特征,包括明显的动作电位和场电位延长以及IKs的严重减少或缺失。我们表明,这两种细胞系中的这种表型具有不同的潜在分子机制:先前未鉴定的c.478-2A>T突变是无义的,并在JLNS-CMs中产生了严格的隐性表型,而错义c.1781G>A损伤导致细胞膜上基因剂量依赖性的通道减少。此外,肾上腺素能刺激特异性地导致JLNS-CMs中的动作电位延长。此外,JLNS-CMs对促心律失常药物的敏感性大大增强,但可以通过药理学方法纠正。我们的数据为导致JLNS的不同类型突变提供了机制性见解,并证明了hiPSC-CMs在药物评估中的潜力。