Suppr超能文献

一种用于调节纤连蛋白活性和粘着斑组装的基于材料的平台。

A material-based platform to modulate fibronectin activity and focal adhesion assembly.

作者信息

Vanterpool Frankie A, Cantini Marco, Seib F Philipp, Salmerón-Sánchez Manuel

机构信息

Division of Biomedical Engineering, School of Engineering, University of Glasgow , Glasgow, United Kingdom . ; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde , Glasgow, United Kingdom .

Division of Biomedical Engineering, School of Engineering, University of Glasgow , Glasgow, United Kingdom .

出版信息

Biores Open Access. 2014 Dec 1;3(6):286-96. doi: 10.1089/biores.2014.0033.

Abstract

We present a detailed characterization of fibronectin (FN) adsorption and cell adhesion on poly(ethyl acrylate) (PEA) and poly(methyl acrylate) (PMA), two polymers with very similar physicochemical properties and chemical structure, which differ in one single methyl group in the lateral chain of the polymer. The globular solution conformation of FN was retained following adsorption onto PMA, whereas spontaneous organization of FN into protein (nano) networks occurred on PEA. This distinct distribution of FN at the material interface promoted a different availability, measured via monoclonal antibody binding, of two domains that facilitated integrin binding to FN: FNIII10 (RGD sequence) and FNIII9 (PHSRN synergy sequence). The enhanced exposure of the synergy domain on PEA compared to PMA triggered different focal adhesion assemblies: L929 fibroblasts showed a higher fraction of smaller focal plaques on PMA (40%) than on PEA (20%). Blocking experiments with monoclonal antibodies against FNIII10 (HFN7.1) and FNIII9 (mAb1937) confirmed the ability of these polymeric substrates to modulate FN conformation. Overall, we propose a simple and versatile material platform that can be used to tune the presentation of a main extracellular matrix protein (FN) to cells, for applications than span from tissue engineering to disease biology.

摘要

我们详细表征了纤连蛋白(FN)在聚丙烯酸乙酯(PEA)和聚丙烯酸甲酯(PMA)上的吸附及细胞黏附情况。这两种聚合物具有非常相似的物理化学性质和化学结构,仅在聚合物侧链中的一个甲基上存在差异。FN吸附到PMA上后保留了其球状溶液构象,而FN在PEA上则自发组织形成蛋白质(纳米)网络。FN在材料界面的这种不同分布促进了通过单克隆抗体结合测量的两个促进整合素与FN结合的结构域的不同可用性:FNIII10(RGD序列)和FNIII9(PHSRN协同序列)。与PMA相比,PEA上协同结构域的暴露增加引发了不同的粘着斑组装:L929成纤维细胞在PMA上(40%)比在PEA上(20%)显示出更高比例的较小粘着斑。用针对FNIII10(HFN7.1)和FNIII9(mAb1937)的单克隆抗体进行的阻断实验证实了这些聚合物底物调节FN构象的能力。总体而言,我们提出了一个简单且通用的材料平台,可用于调节主要细胞外基质蛋白(FN)向细胞的呈现,适用于从组织工程到疾病生物学等广泛应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd36/4245838/e7a04ad006b7/fig-1.jpg

相似文献

1
A material-based platform to modulate fibronectin activity and focal adhesion assembly.
Biores Open Access. 2014 Dec 1;3(6):286-96. doi: 10.1089/biores.2014.0033.
2
Engineered microenvironments for synergistic VEGF - Integrin signalling during vascularization.
Biomaterials. 2017 May;126:61-74. doi: 10.1016/j.biomaterials.2017.02.024. Epub 2017 Feb 21.
3
The strength of the protein-material interaction determines cell fate.
Acta Biomater. 2018 Sep 1;77:74-84. doi: 10.1016/j.actbio.2018.07.016. Epub 2018 Jul 10.
4
Controlled Assembly of Fibronectin Nanofibrils Triggered by Random Copolymer Chemistry.
ACS Appl Mater Interfaces. 2015 Aug 19;7(32):18125-35. doi: 10.1021/acsami.5b05466. Epub 2015 Aug 10.
5
Role of material-driven fibronectin fibrillogenesis in protein remodeling.
Biores Open Access. 2013 Oct;2(5):364-73. doi: 10.1089/biores.2013.0017.
6
Cell migration on material-driven fibronectin microenvironments.
Biomater Sci. 2017 Jun 27;5(7):1326-1333. doi: 10.1039/c7bm00333a.
7
Effect of topological cues on material-driven fibronectin fibrillogenesis and cell differentiation.
J Mater Sci Mater Med. 2012 Jan;23(1):195-204. doi: 10.1007/s10856-011-4532-z. Epub 2011 Dec 27.
8
Molecular assembly and biological activity of a recombinant fragment of fibronectin (FNIII(7-10)) on poly(ethyl acrylate).
Colloids Surf B Biointerfaces. 2010 Jul 1;78(2):310-6. doi: 10.1016/j.colsurfb.2010.03.019. Epub 2010 Mar 29.
9
Role of material-driven fibronectin fibrillogenesis in cell differentiation.
Biomaterials. 2011 Mar;32(8):2099-105. doi: 10.1016/j.biomaterials.2010.11.057. Epub 2010 Dec 24.
10
Integrin α3β1 Binding to Fibronectin Is Dependent on the Ninth Type III Repeat.
J Biol Chem. 2015 Oct 16;290(42):25534-47. doi: 10.1074/jbc.M115.656702. Epub 2015 Aug 28.

引用本文的文献

1
Functionalising silk hydrogels with hetero- and homotypic nanoparticles.
RSC Adv. 2024 Jan 22;14(5):3525-3535. doi: 10.1039/d3ra07634b. eCollection 2024 Jan 17.
2
Fine-Tuning Regulation of Surface Mobility by Acrylate Copolymers and Its Effect on Cell Adhesion and Differentiation.
ACS Appl Bio Mater. 2023 May 15;6(5):1755-1762. doi: 10.1021/acsabm.2c01053. Epub 2023 Apr 17.
3
Fibronectin and Its Applications in Dentistry and Periodontics: A Cell Behaviour Conditioner.
Cureus. 2022 Oct 26;14(10):e30702. doi: 10.7759/cureus.30702. eCollection 2022 Oct.
4
Engineering Nanopatterned Structures to Orchestrate Macrophage Phenotype by Cell Shape.
J Funct Biomater. 2022 Mar 14;13(1):31. doi: 10.3390/jfb13010031.
8
Material-driven fibronectin assembly rescues matrix defects due to mutations in collagen IV in fibroblasts.
Biomaterials. 2020 Sep;252:120090. doi: 10.1016/j.biomaterials.2020.120090. Epub 2020 May 3.
9
Nanoscale Coatings for Ultralow Dose BMP-2-Driven Regeneration of Critical-Sized Bone Defects.
Adv Sci (Weinh). 2018 Nov 19;6(2):1800361. doi: 10.1002/advs.201800361. eCollection 2019 Jan 23.
10
Engineered Coatings for Titanium Implants To Present Ultralow Doses of BMP-7.
ACS Biomater Sci Eng. 2018 May 14;4(5):1812-1819. doi: 10.1021/acsbiomaterials.7b01037. Epub 2018 Apr 22.

本文引用的文献

2
The Focal Adhesion Analysis Server: a web tool for analyzing focal adhesion dynamics.
F1000Res. 2013 Mar 4;2:68. doi: 10.12688/f1000research.2-68.v1. eCollection 2013.
3
Role of material-driven fibronectin fibrillogenesis in protein remodeling.
Biores Open Access. 2013 Oct;2(5):364-73. doi: 10.1089/biores.2013.0017.
4
How vinculin regulates force transmission.
Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9788-93. doi: 10.1073/pnas.1216209110. Epub 2013 May 28.
5
Mechanosensitivity and compositional dynamics of cell-matrix adhesions.
EMBO Rep. 2013 Jun;14(6):509-19. doi: 10.1038/embor.2013.49. Epub 2013 May 17.
6
Surface mobility regulates skeletal stem cell differentiation.
Integr Biol (Camb). 2012 May;4(5):531-9. doi: 10.1039/c2ib00139j. Epub 2012 Mar 6.
7
The structure of cell-matrix adhesions: the new frontier.
Curr Opin Cell Biol. 2012 Feb;24(1):134-40. doi: 10.1016/j.ceb.2011.12.001. Epub 2011 Dec 22.
8
The control of endothelial cell adhesion and migration by shear stress and matrix-substrate anchorage.
Biomaterials. 2012 Mar;33(7):1959-69. doi: 10.1016/j.biomaterials.2011.11.017. Epub 2011 Dec 10.
9
Structure and function of focal adhesions.
Curr Opin Cell Biol. 2012 Feb;24(1):116-24. doi: 10.1016/j.ceb.2011.11.001. Epub 2011 Dec 2.
10
Role of material-driven fibronectin fibrillogenesis in cell differentiation.
Biomaterials. 2011 Mar;32(8):2099-105. doi: 10.1016/j.biomaterials.2010.11.057. Epub 2010 Dec 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验