Lutas Andrew, Birnbaumer Lutz, Yellen Gary
Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, and.
Laboratory of Neurobiology, National Institute of Environmental Research, National Institutes of Health, Research Triangle Park, North Carolina 27709.
J Neurosci. 2014 Dec 3;34(49):16336-47. doi: 10.1523/JNEUROSCI.1357-14.2014.
Neurons use glucose to fuel glycolysis and provide substrates for mitochondrial respiration, but neurons can also use alternative fuels that bypass glycolysis and feed directly into mitochondria. To determine whether neuronal pacemaking depends on active glucose metabolism, we switched the metabolic fuel from glucose to alternative fuels, lactate or β-hydroxybutyrate, while monitoring the spontaneous firing of GABAergic neurons in mouse substantia nigra pars reticulata (SNr) brain slices. We found that alternative fuels, in the absence of glucose, sustained SNr spontaneous firing at basal rates, but glycolysis may still be supported by glycogen in the absence of glucose. To prevent any glycogen-fueled glycolysis, we directly inhibited glycolysis using either 2-deoxyglucose or iodoacetic acid. Inhibiting glycolysis in the presence of alternative fuels lowered SNr firing to a slower sustained firing rate. Surprisingly, we found that the decrease in SNr firing was not mediated by ATP-sensitive potassium (KATP) channel activity, but if we lowered the perfusion flow rate or omitted the alternative fuel, KATP channels were activated and could silence SNr firing. The KATP-independent slowing of SNr firing that occurred with glycolytic inhibition in the presence of alternative fuels was consistent with a decrease in a nonselective cationic conductance. Although mitochondrial metabolism alone can prevent severe energy deprivation and KATP channel activation in SNr neurons, active glucose metabolism appears important for keeping open a class of ion channels that is crucial for the high spontaneous firing rate of SNr neurons.
神经元利用葡萄糖为糖酵解提供能量,并为线粒体呼吸作用提供底物,但神经元也可以使用替代燃料,这些燃料绕过糖酵解,直接进入线粒体。为了确定神经元的节律性发放是否依赖于活跃的葡萄糖代谢,我们将代谢燃料从葡萄糖切换为替代燃料乳酸或β-羟基丁酸,同时监测小鼠黑质网状部(SNr)脑片中GABA能神经元的自发放电。我们发现,在没有葡萄糖的情况下,替代燃料能维持SNr的基础自发放电速率,但在没有葡萄糖时,糖酵解仍可能由糖原支持。为了阻止任何由糖原驱动的糖酵解,我们使用2-脱氧葡萄糖或碘乙酸直接抑制糖酵解。在存在替代燃料的情况下抑制糖酵解,会使SNr的放电降低到较慢的持续放电速率。令人惊讶的是,我们发现SNr放电的降低不是由ATP敏感性钾(KATP)通道活性介导的,但是如果我们降低灌注流速或省略替代燃料,KATP通道就会被激活并使SNr放电沉默。在存在替代燃料的情况下,糖酵解抑制导致的SNr放电的KATP非依赖性减慢,与非选择性阳离子电导的降低一致。虽然仅线粒体代谢就能防止SNr神经元出现严重的能量剥夺和KATP通道激活,但活跃的葡萄糖代谢对于保持一类对SNr神经元高自发放电速率至关重要的离子通道开放似乎很重要。