Suppr超能文献

响应细菌的抗菌表面用于留置装置感染。

Bacteria responsive antibacterial surfaces for indwelling device infections.

机构信息

Department of Chemistry, Chemical Biology, and Biomedical Engineering, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA.

Department of Chemistry, Chemical Biology, and Biomedical Engineering, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA.

出版信息

J Control Release. 2015 Jan 28;198:18-25. doi: 10.1016/j.jconrel.2014.11.025. Epub 2014 Dec 4.

Abstract

Indwelling device infections now represent life-threatening circumstances as a result of the biofilms' tolerance to antibiotic treatments. Current antibiotic impregnation approaches through sustained antibiotic release have some unsolved problems which include short life-span, narrowed antibacterial spectrum, ineffectiveness towards resistant mutants, and the potential to hasten the antibiotic resistance process. In this study, bacteria responsive anti-biofilm surfaces were developed using bioactive peptides with proved activity to antibiotic resistant bacteria and biofilms. Resulting surfaces were stable under physiological conditions and in the presence of high concentrations of salts (0.5M NaCl) and biomacromolcules (1.0% DNA and 2.0% alginate), and thus showed good biocompatibility to various tissue cells. However, lytic peptide immobilized surfaces could sense bacteria adhesion and kill attached bacteria effectively and specifically, so biofilms were unable to develop on the lytic peptide immobilized surfaces. Bacteria responsive catheters remained biofilm free for up to a week. Therefore, the bacteria responsive antibacterial surfaces developed in this study represent new opportunities for indwelling device infections.

摘要

由于生物膜对抗生素治疗的耐受性,留置装置感染现在成为危及生命的情况。目前通过持续释放抗生素进行抗生素浸渍的方法存在一些未解决的问题,包括寿命短、抗菌谱狭窄、对耐药突变体无效以及加速抗生素耐药过程的潜力。在这项研究中,使用对具有抗药性的细菌和生物膜具有活性的生物活性肽开发了对细菌有反应的抗生物膜表面。由此产生的表面在生理条件下以及在高浓度盐(0.5M NaCl)和生物大分子(1.0%DNA 和 2.0%藻酸盐)存在下都很稳定,因此对各种组织细胞具有良好的生物相容性。但是,溶菌肽固定化表面可以感测细菌的黏附并有效地特异性杀死黏附的细菌,因此生物膜无法在溶菌肽固定化表面上形成。对细菌有反应的导管在长达一周的时间内保持无生物膜。因此,本研究中开发的对细菌有反应的抗菌表面为留置装置感染提供了新的机会。

相似文献

1
Bacteria responsive antibacterial surfaces for indwelling device infections.
J Control Release. 2015 Jan 28;198:18-25. doi: 10.1016/j.jconrel.2014.11.025. Epub 2014 Dec 4.
2
An organoselenium compound inhibits Staphylococcus aureus biofilms on hemodialysis catheters in vivo.
Antimicrob Agents Chemother. 2012 Feb;56(2):972-8. doi: 10.1128/AAC.05680-11. Epub 2011 Nov 28.
3
Synergistic activity of dispersin B and cefamandole nafate in inhibition of staphylococcal biofilm growth on polyurethanes.
Antimicrob Agents Chemother. 2007 Aug;51(8):2733-40. doi: 10.1128/AAC.01249-06. Epub 2007 Jun 4.
5
Using bacteriophages to reduce formation of catheter-associated biofilms by Staphylococcus epidermidis.
Antimicrob Agents Chemother. 2006 Apr;50(4):1268-75. doi: 10.1128/AAC.50.4.1268-1275.2006.
6
Mini-review: Antimicrobial central venous catheters--recent advances and strategies.
Biofouling. 2011 Jul;27(6):609-20. doi: 10.1080/08927014.2011.593261.
7
A dynamic in vitro model for evaluating antimicrobial activity against bacterial biofilms using a new device and clinical-used catheters.
J Microbiol Methods. 2010 Dec;83(3):307-11. doi: 10.1016/j.mimet.2010.09.017. Epub 2010 Oct 1.
8
Activity of sodium metabisulfite against planktonic and biofilm Staphylococcus species.
Diagn Microbiol Infect Dis. 2007 Apr;57(4):355-9. doi: 10.1016/j.diagmicrobio.2006.10.003. Epub 2006 Dec 22.
9
An antimicrobial modified silicone peritoneal catheter with activity against both Gram-positive and Gram-negative bacteria.
Biomaterials. 2009 Jun;30(18):3167-73. doi: 10.1016/j.biomaterials.2009.02.028. Epub 2009 Mar 16.

引用本文的文献

1
Coumarin derivatives as new anti-biofilm agents against Staphylococcus aureus.
PLoS One. 2024 Sep 19;19(9):e0307439. doi: 10.1371/journal.pone.0307439. eCollection 2024.
2
An Overview of Polymeric Nanoplatforms to Deliver Veterinary Antimicrobials.
Nanomaterials (Basel). 2024 Feb 9;14(4):341. doi: 10.3390/nano14040341.
4
Research progress of stimulus-responsive antibacterial materials for bone infection.
Front Bioeng Biotechnol. 2022 Dec 23;10:1069932. doi: 10.3389/fbioe.2022.1069932. eCollection 2022.
5
Stimuli-Responsive Antibacterial Materials: Molecular Structures, Design Principles, and Biomedical Applications.
Adv Sci (Weinh). 2022 May;9(13):e2104843. doi: 10.1002/advs.202104843. Epub 2022 Feb 27.
6
Antibacterial surfaces: Strategies and applications.
Sci China Technol Sci. 2022;65(5):1000-1010. doi: 10.1007/s11431-021-1962-x. Epub 2022 Jan 4.
7
Plasma-initiated graft polymerization of carbon nanoparticles as nano-based drug delivery systems.
Biofouling. 2022 Jan;38(1):13-28. doi: 10.1080/08927014.2021.2008376. Epub 2021 Nov 28.
8
Targeting of Nanotherapeutics to Infection Sites for Antimicrobial Therapy.
Adv Ther (Weinh). 2019 Nov;2(11). doi: 10.1002/adtp.201900095. Epub 2019 Sep 26.

本文引用的文献

1
Peptide fibrils with altered stability, activity, and cell selectivity.
Biomacromolecules. 2013 Jul 8;14(7):2326-31. doi: 10.1021/bm400618m. Epub 2013 Jun 11.
2
Peptide self-assembly on cell membranes to induce cell lysis.
Biomacromolecules. 2012 Oct 8;13(10):3327-33. doi: 10.1021/bm301106p. Epub 2012 Sep 11.
3
Multilayer, degradable coating as a carrier for the sustained release of antibiotics: preparation and antimicrobial efficacy in vitro.
J Control Release. 2012 Sep 28;162(3):492-501. doi: 10.1016/j.jconrel.2012.08.003. Epub 2012 Aug 10.
4
Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials.
Biomaterials. 2012 Sep;33(26):5967-82. doi: 10.1016/j.biomaterials.2012.05.031. Epub 2012 Jun 12.
5
Mathematical modelling of tooth demineralisation and pH profiles in dental plaque.
J Theor Biol. 2012 Sep 21;309:159-75. doi: 10.1016/j.jtbi.2012.05.024. Epub 2012 Jun 8.
6
Activity and selectivity of histidine-containing lytic peptides to antibiotic-resistant bacteria.
Arch Microbiol. 2012 Sep;194(9):769-78. doi: 10.1007/s00203-012-0810-5. Epub 2012 Apr 12.
7
New strategies to prevent catheter-associated urinary tract infections.
Nat Rev Urol. 2012 Apr 17;9(6):305-14. doi: 10.1038/nrurol.2012.68.
8
A lipid-and-polymer-based novel local drug delivery system--BonyPid™: from physicochemical aspects to therapy of bacterially infected bones.
J Control Release. 2012 Jun 10;160(2):353-61. doi: 10.1016/j.jconrel.2012.03.027. Epub 2012 Apr 4.
9
Lytic peptides with improved stability and selectivity designed for cancer treatment.
J Pharm Sci. 2012 Apr;101(4):1508-17. doi: 10.1002/jps.23043. Epub 2012 Jan 6.
10
Resistance of bacterial biofilms to disinfectants: a review.
Biofouling. 2011 Oct;27(9):1017-32. doi: 10.1080/08927014.2011.626899.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验