Suppr超能文献

利用空间和形状先验知识对中风患者脑血管病变进行分割。

Segmentation of cerebrovascular pathologies in stroke patients with spatial and shape priors.

作者信息

Dalca Adrian Vasile, Sridharan Ramesh, Cloonan Lisa, Fitzpatrick Kaitlin M, Kanakis Allison, Furie Karen L, Rosand Jonathan, Wu Ona, Sabuncu Mert, Rost Natalia S, Golland Polina

出版信息

Med Image Comput Comput Assist Interv. 2014;17(Pt 2):773-80. doi: 10.1007/978-3-319-10470-6_96.

Abstract

We propose and demonstrate an inference algorithm for the automatic segmentation of cerebrovascular pathologies in clinical MR images of the brain. Identifying and differentiating pathologies is important for understanding the underlying mechanisms and clinical outcomes of cerebral ischemia. Manual delineation of separate pathologies is infeasible in large studies of stroke that include thousands of patients. Unlike normal brain tissues and structures, the location and shape of the lesions vary across patients, presenting serious challenges for prior-driven segmentation. Our generative model captures spatial patterns and intensity properties associated with different cerebrovascular pathologies in stroke patients. We demonstrate the resulting segmentation algorithm on clinical images of a stroke patient cohort.

摘要

我们提出并演示了一种用于在脑部临床磁共振成像中自动分割脑血管病变的推理算法。识别和区分病变对于理解脑缺血的潜在机制和临床结果很重要。在包含数千名患者的大型中风研究中,手动描绘单独的病变是不可行的。与正常脑组织和结构不同,病变的位置和形状在患者之间各不相同,这给基于先验的分割带来了严峻挑战。我们的生成模型捕捉了与中风患者不同脑血管病变相关的空间模式和强度特性。我们在一组中风患者的临床图像上展示了由此产生的分割算法。

相似文献

1
Segmentation of cerebrovascular pathologies in stroke patients with spatial and shape priors.
Med Image Comput Comput Assist Interv. 2014;17(Pt 2):773-80. doi: 10.1007/978-3-319-10470-6_96.
2
Multimodal MRI segmentation of ischemic stroke lesions.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:1595-8. doi: 10.1109/IEMBS.2007.4352610.
3
A generative model for image segmentation based on label fusion.
IEEE Trans Med Imaging. 2010 Oct;29(10):1714-29. doi: 10.1109/TMI.2010.2050897. Epub 2010 Jun 17.
4
A generative model for brain tumor segmentation in multi-modal images.
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):151-9. doi: 10.1007/978-3-642-15745-5_19.
5
Segmentation of brain images using adaptive atlases with application to ventriculomegaly.
Inf Process Med Imaging. 2011;22:1-12. doi: 10.1007/978-3-642-22092-0_1.
6
Deformable atlas for multi-structure segmentation.
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):743-50. doi: 10.1007/978-3-642-40811-3_93.
7
Low-rank to the rescue - atlas-based analyses in the presence of pathologies.
Med Image Comput Comput Assist Interv. 2014;17(Pt 3):97-104. doi: 10.1007/978-3-319-10443-0_13.
8
Automated brain structure segmentation based on atlas registration and appearance models.
IEEE Trans Med Imaging. 2012 Feb;31(2):276-86. doi: 10.1109/TMI.2011.2168420. Epub 2011 Sep 19.
9
BIANCA (Brain Intensity AbNormality Classification Algorithm): A new tool for automated segmentation of white matter hyperintensities.
Neuroimage. 2016 Nov 1;141:191-205. doi: 10.1016/j.neuroimage.2016.07.018. Epub 2016 Jul 9.
10
Joint segmentation-registration of organs using geometric models.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:5251-4. doi: 10.1109/IEMBS.2007.4353526.

引用本文的文献

1
Brain Tumor Segmentation From Multi-Modal MR Images via Ensembling UNets.
Front Radiol. 2021 Oct 21;1:704888. doi: 10.3389/fradi.2021.704888. eCollection 2021.
2
Automatic brain lesion segmentation on standard magnetic resonance images: a scoping review.
BMJ Open. 2021 Jan 29;11(1):e042660. doi: 10.1136/bmjopen-2020-042660.
3
Cortical Thickness Estimation in Individuals With Cerebral Small Vessel Disease, Focal Atrophy, and Chronic Stroke Lesions.
Front Neurosci. 2020 Dec 14;14:598868. doi: 10.3389/fnins.2020.598868. eCollection 2020.
4
White matter hyperintensity burden in acute stroke patients differs by ischemic stroke subtype.
Neurology. 2020 Jul 7;95(1):e79-e88. doi: 10.1212/WNL.0000000000009728. Epub 2020 Jun 3.
5
White matter hyperintensity quantification in large-scale clinical acute ischemic stroke cohorts - The MRI-GENIE study.
Neuroimage Clin. 2019;23:101884. doi: 10.1016/j.nicl.2019.101884. Epub 2019 May 29.
6
Automated segmentation of haematoma and perihaematomal oedema in MRI of acute spontaneous intracerebral haemorrhage.
Comput Biol Med. 2019 Mar;106:126-139. doi: 10.1016/j.compbiomed.2019.01.022. Epub 2019 Jan 29.
7
White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks.
Neuroimage Clin. 2017 Dec 20;17:918-934. doi: 10.1016/j.nicl.2017.12.022. eCollection 2018.
8
Design and rationale for examining neuroimaging genetics in ischemic stroke: The MRI-GENIE study.
Neurol Genet. 2017 Aug 24;3(5):e180. doi: 10.1212/NXG.0000000000000180. eCollection 2017 Oct.

本文引用的文献

1
Quantification and Analysis of Large Multimodal Clinical Image Studies: Application to Stroke.
Multimodal Brain Image Anal (2013). 2013;8159:18-30. doi: 10.1007/978-3-319-02126-3_3.
2
Acute Stroke Imaging Research Roadmap II.
Stroke. 2013 Sep;44(9):2628-39. doi: 10.1161/STROKEAHA.113.002015. Epub 2013 Jul 16.
3
Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images.
Neuroimage. 2011 Jul 15;57(2):378-90. doi: 10.1016/j.neuroimage.2011.03.080. Epub 2011 Apr 8.
4
White matter hyperintensity burden and susceptibility to cerebral ischemia.
Stroke. 2010 Dec;41(12):2807-11. doi: 10.1161/STROKEAHA.110.595355. Epub 2010 Oct 14.
5
A reproducible evaluation of ANTs similarity metric performance in brain image registration.
Neuroimage. 2011 Feb 1;54(3):2033-44. doi: 10.1016/j.neuroimage.2010.09.025. Epub 2010 Sep 17.
6
Adaptive segmentation of MRI data.
IEEE Trans Med Imaging. 1996;15(4):429-42. doi: 10.1109/42.511747.
7
Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI.
IEEE Trans Med Imaging. 1996;15(2):154-69. doi: 10.1109/42.491417.
8
Using the logarithm of odds to define a vector space on probabilistic atlases.
Med Image Anal. 2007 Oct;11(5):465-77. doi: 10.1016/j.media.2007.06.003. Epub 2007 Jun 22.
9
Unified approach for multiple sclerosis lesion segmentation on brain MRI.
Ann Biomed Eng. 2006 Jan;34(1):142-51. doi: 10.1007/s10439-005-9009-0. Epub 2006 Mar 9.
10
Detection and analysis of statistical differences in anatomical shape.
Med Image Anal. 2005 Feb;9(1):69-86. doi: 10.1016/j.media.2004.07.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验