Department of Epidemiology, Biostatistics, & Occupational Health, McGill University, Montreal, QC, Canada H3A 1A2.
Biostatistics. 2013 Jan;14(1):1-14. doi: 10.1093/biostatistics/kxs024. Epub 2012 Jul 12.
Targeted maximum likelihood methods have been proposed to estimate treatment effects for longitudinal data in the presence of time-dependent confounders. This class of methods has been mathematically proven to be doubly robust and to optimize the asymptotic estimating efficiency among the class of regular, semi-parametric estimators when all estimated density components are correctly specified. We show that methods previously proposed to build a one-step estimator with a logistic loss function generalize to a generalized linear loss function, and so may be applied naturally to an outcome that can be described by any exponential family member. We evaluate several methods for estimating unstructured marginal treatment effects for data with two time intervals in a simulation study, showing that these estimators have competitively low bias and variance in an array of misspecified situations, and can be made to perform well under near-positivity violations. We apply the methods to the PROmotion of Breastfeeding Intervention Trial data, demonstrating that longer term breastfeeding can protect infants from gastrointestinal infection.
针对存在时变混杂因素的纵向数据,提出了目标极大似然法来估计治疗效果。这一类方法已在数学上被证明是双重稳健的,并且在所有估计的密度分量都正确指定的情况下,在正则、半参数估计器类中优化了渐近估计效率。我们表明,以前提出的用于构建具有逻辑损失函数的一步估计器的方法可以推广到广义线性损失函数,因此可以自然地应用于可以用任何指数族成员来描述的结果。我们在具有两个时间间隔的数据的模拟研究中评估了几种用于估计非结构化边际治疗效果的方法,结果表明,在一系列指定不当的情况下,这些估计器的偏差和方差具有竞争力低,并且可以在接近正性违反的情况下表现良好。我们将这些方法应用于母乳喂养促进试验的数据,证明了长期母乳喂养可以保护婴儿免受胃肠道感染。