Montesinos-López Osval A, Montesinos-López Abelardo, Pérez-Rodríguez Paulino, de Los Campos Gustavo, Eskridge Kent, Crossa José
Facultad de Telemática, Universidad de Colima, Avenida Universidad 333, Colima, México.
Departamento de Estadística, Centro de Investigación en Matemáticas (CIMAT), Guanajuato, Guanajuato, México.
G3 (Bethesda). 2014 Dec 23;5(2):291-300. doi: 10.1534/g3.114.016188.
Categorical scores for disease susceptibility or resistance often are recorded in plant breeding. The aim of this study was to introduce genomic models for analyzing ordinal characters and to assess the predictive ability of genomic predictions for ordered categorical phenotypes using a threshold model counterpart of the Genomic Best Linear Unbiased Predictor (i.e., TGBLUP). The threshold model was used to relate a hypothetical underlying scale to the outward categorical response. We present an empirical application where a total of nine models, five without interaction and four with genomic × environment interaction (G×E) and genomic additive × additive × environment interaction (G×G×E), were used. We assessed the proposed models using data consisting of 278 maize lines genotyped with 46,347 single-nucleotide polymorphisms and evaluated for disease resistance [with ordinal scores from 1 (no disease) to 5 (complete infection)] in three environments (Colombia, Zimbabwe, and Mexico). Models with G×E captured a sizeable proportion of the total variability, which indicates the importance of introducing interaction to improve prediction accuracy. Relative to models based on main effects only, the models that included G×E achieved 9-14% gains in prediction accuracy; adding additive × additive interactions did not increase prediction accuracy consistently across locations.
在植物育种中,通常会记录疾病易感性或抗性的分类评分。本研究的目的是引入用于分析有序性状的基因组模型,并使用基因组最佳线性无偏预测器(即TGBLUP)的阈值模型对应物来评估基因组预测对有序分类表型的预测能力。阈值模型用于将假设的潜在尺度与外在的分类反应联系起来。我们展示了一个实证应用,其中总共使用了九个模型,五个无交互作用模型和四个具有基因组×环境互作(G×E)以及基因组加性×加性×环境互作(G×G×E)的模型。我们使用由278个玉米自交系组成的数据评估了所提出的模型,这些自交系用46,347个单核苷酸多态性进行了基因分型,并在三个环境(哥伦比亚、津巴布韦和墨西哥)中评估了抗病性[分类评分从1(无病害)到5(完全感染)]。具有G×E的模型捕获了总变异性的相当大比例,这表明引入互作以提高预测准确性的重要性。相对于仅基于主效应的模型,包含G×E的模型在预测准确性上提高了9 - 14%;添加加性×加性互作在不同地点并没有一致地提高预测准确性。