Hooten Kristopher G, Beers David R, Zhao Weihua, Appel Stanley H
Department of Neurology, Houston Methodist Neurological Institute, Peggy and Gary Edwards ALS Research Laboratory, Houston Methodist Hospital Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA.
Neurotherapeutics. 2015 Apr;12(2):364-75. doi: 10.1007/s13311-014-0329-3.
Amyotrophic lateral sclerosis (ALS) is a clinically heterogeneous disorder characterized by loss of motor neurons, resulting in paralysis and death. Multiple mechanisms of motor neuron injury have been implicated based upon the more than 20 different genetic causes of familial ALS. These inherited mutations compromise diverse motor neuron pathways leading to cell-autonomous injury. In the ALS transgenic mouse models, however, motor neurons do not die alone. Cell death is noncell-autonomous dependent upon a well orchestrated dialogue between motor neurons and surrounding glia and adaptive immune cells. The pathogenesis of ALS consists of 2 stages: an early neuroprotective stage and a later neurotoxic stage. During early phases of disease progression, the immune system is protective with glia and T cells, especially M2 macrophages/microglia, and T helper 2 cells and regulatory T cells, providing anti-inflammatory factors that sustain motor neuron viability. As the disease progresses and motor neuron injury accelerates, a second rapidly progressing phase develops, characterized by M1 macrophages/microglia, and proinflammatory T cells. In rapidly progressing ALS patients, as in transgenic mice, neuroprotective regulatory T cells are significantly decreased and neurotoxicity predominates. Our own therapeutic efforts are focused on modulating these neuroinflammatory pathways. This review will focus on the cellular players involved in neuroinflammation in ALS and current therapeutic strategies to enhance neuroprotection and suppress neurotoxicity with the goal of arresting the progressive and devastating nature of ALS.
肌萎缩侧索硬化症(ALS)是一种临床异质性疾病,其特征为运动神经元丧失,最终导致瘫痪和死亡。基于20多种不同的家族性ALS遗传病因,人们提出了多种运动神经元损伤机制。这些遗传性突变损害了多种运动神经元通路,导致细胞自主性损伤。然而,在ALS转基因小鼠模型中,运动神经元并非独自死亡。细胞死亡是非细胞自主性的,依赖于运动神经元与周围神经胶质细胞和适应性免疫细胞之间精心编排的对话。ALS的发病机制包括两个阶段:早期神经保护阶段和后期神经毒性阶段。在疾病进展的早期阶段,免疫系统具有保护作用,神经胶质细胞和T细胞,尤其是M2巨噬细胞/小胶质细胞、辅助性T细胞2型和调节性T细胞,会提供维持运动神经元活力的抗炎因子。随着疾病进展和运动神经元损伤加速,会进入第二个快速进展阶段,其特征为M1巨噬细胞/小胶质细胞和促炎性T细胞。在快速进展的ALS患者中,与转基因小鼠一样,神经保护性调节性T细胞显著减少,神经毒性占主导。我们自己的治疗努力集中在调节这些神经炎症通路。本综述将聚焦于参与ALS神经炎症的细胞成分以及当前增强神经保护和抑制神经毒性的治疗策略,目标是阻止ALS的进行性和破坏性本质。