Mandell Daniel J, Lajoie Marc J, Mee Michael T, Takeuchi Ryo, Kuznetsov Gleb, Norville Julie E, Gregg Christopher J, Stoddard Barry L, Church George M
Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
1] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Program in Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
Nature. 2015 Feb 5;518(7537):55-60. doi: 10.1038/nature14121. Epub 2015 Jan 21.
Genetically modified organisms (GMOs) are increasingly deployed at large scales and in open environments. Genetic biocontainment strategies are needed to prevent unintended proliferation of GMOs in natural ecosystems. Existing biocontainment methods are insufficient because they impose evolutionary pressure on the organism to eject the safeguard by spontaneous mutagenesis or horizontal gene transfer, or because they can be circumvented by environmentally available compounds. Here we computationally redesign essential enzymes in the first organism possessing an altered genetic code (Escherichia coli strain C321.ΔA) to confer metabolic dependence on non-standard amino acids for survival. The resulting GMOs cannot metabolically bypass their biocontainment mechanisms using known environmental compounds, and they exhibit unprecedented resistance to evolutionary escape through mutagenesis and horizontal gene transfer. This work provides a foundation for safer GMOs that are isolated from natural ecosystems by a reliance on synthetic metabolites.
转基因生物(GMOs)越来越多地在大规模和开放环境中部署。需要遗传生物遏制策略来防止转基因生物在自然生态系统中意外增殖。现有的生物遏制方法并不充分,因为它们会对生物体施加进化压力,使其通过自发诱变或水平基因转移来排除保障措施,或者因为它们可能会被环境中存在的化合物规避。在这里,我们通过计算重新设计了第一个拥有改变遗传密码的生物体(大肠杆菌菌株C321.ΔA)中的必需酶,使其代谢依赖非标准氨基酸才能存活。由此产生的转基因生物无法利用已知的环境化合物在代谢上绕过其生物遏制机制,并且它们对通过诱变和水平基因转移实现的进化逃逸表现出前所未有的抗性。这项工作为更安全的转基因生物奠定了基础,这些转基因生物通过依赖合成代谢物与自然生态系统隔离开来。