Suppr超能文献

使用隐形眼镜传感器自动检测和量化昼夜眼眨动

Automated Detection and Quantification of Circadian Eye Blinks Using a Contact Lens Sensor.

作者信息

Gisler Christophe, Ridi Antonio, Hennebert Jean, Weinreb Robert N, Mansouri Kaweh

机构信息

ICT Institute, University of Applied Sciences Western Switzerland, Fribourg, Switzerland.

Hamilton Glaucoma Center, Department of Ophthalmology, University of California, San Diego, USA.

出版信息

Transl Vis Sci Technol. 2015 Jan 22;4(1):4. doi: 10.1167/tvst.4.1.4. eCollection 2015 Jan.

Abstract

PURPOSE

To detect and quantify eye blinks during 24-hour intraocular pressure (IOP) monitoring with a contact lens sensor (CLS).

METHODS

A total of 249 recordings of 24-hour IOP patterns from 202 participants using a CLS were included. Software was developed to automatically detect eye blinks, and wake and sleep periods. The blink detection method was based on detection of CLS signal peaks greater than a threshold proportional to the signal amplitude. Three methods for automated detection of the sleep and wake periods were evaluated. These relied on blink detection and subsequent comparison of the local signal amplitude with a threshold proportional to the mean signal amplitude. These methods were compared to manual sleep/wake verification. In a pilot, simultaneous video recording of 10 subjects was performed to compare the software to observer-measured blink rates.

RESULTS

Mean (SD) age of participants was 57.4 ± 16.5 years (males, 49.5%). There was excellent agreement between software-detected number of blinks and visually measured blinks for both observers (intraclass correlation coefficient [ICC], 0.97 for observer 1; ICC, 0.98 for observer 2). The CLS measured a mean blink frequency of 29.8 ± 15.4 blinks/min, a blink duration of 0.26 ± 0.21 seconds and an interblink interval of 1.91 ± 2.03 seconds. The best method for identifying sleep periods had an accuracy of 95.2 ± 0.5%.

CONCLUSIONS

Automated analysis of CLS 24-hour IOP recordings can accurately quantify eye blinks, and identify sleep and wake periods.

TRANSLATIONAL RELEVANCE

This study sheds new light on the potential importance of eye blinks in glaucoma and may contribute to improved understanding of circadian IOP characteristics.

摘要

目的

使用隐形眼镜传感器(CLS)在24小时眼压(IOP)监测期间检测并量化眨眼情况。

方法

纳入了202名参与者使用CLS进行的249次24小时眼压模式记录。开发了软件以自动检测眨眼、清醒和睡眠时段。眨眼检测方法基于检测大于与信号幅度成比例的阈值的CLS信号峰值。评估了三种自动检测睡眠和清醒时段的方法。这些方法依赖于眨眼检测以及随后将局部信号幅度与与平均信号幅度成比例的阈值进行比较。将这些方法与手动睡眠/清醒验证进行了比较。在一项试点研究中,对10名受试者进行了同步视频记录,以将该软件与观察者测量的眨眼率进行比较。

结果

参与者的平均(标准差)年龄为57.4±16.5岁(男性,49.5%)。对于两位观察者而言,软件检测到的眨眼次数与视觉测量的眨眼次数之间均具有极佳的一致性(组内相关系数[ICC],观察者1为0.97;观察者2为0.98)。CLS测量的平均眨眼频率为29.8±15.4次/分钟,眨眼持续时间为0.26±0.21秒,眨眼间隔为1.91±2.03秒。识别睡眠时段的最佳方法的准确率为95.2±0.5%。

结论

对CLS的24小时眼压记录进行自动分析可准确量化眨眼情况,并识别睡眠和清醒时段。

转化意义

本研究为眨眼在青光眼中的潜在重要性提供了新的见解,并可能有助于增进对昼夜眼压特征的理解。

相似文献

引用本文的文献

5
Perceptual Grouping During Binocular Rivalry in Mild Glaucoma.轻度青光眼双眼竞争期间的知觉分组
Front Aging Neurosci. 2022 May 25;14:833150. doi: 10.3389/fnagi.2022.833150. eCollection 2022.

本文引用的文献

6
Blink rate in ALS.肌萎缩侧索硬化症中的眨眼频率
Amyotroph Lateral Scler Frontotemporal Degener. 2013 May;14(4):291-3. doi: 10.3109/21678421.2012.729217. Epub 2012 Nov 14.
7
Analysis of continuous 24-hour intraocular pressure patterns in glaucoma.青光眼 24 小时连续眼压模式分析。
Invest Ophthalmol Vis Sci. 2012 Dec 13;53(13):8050-6. doi: 10.1167/iovs.12-10569.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验