Shortreed Susan M, Laber Eric, Scott Stroup T, Pineau Joelle, Murphy Susan A
Biostatistics Unit, Group Health Research Institute, Seattle, WA, 98101, U.S.A.; Department of Biostatistics, University of Washington, Seattle, WA, 98195, U.S.A.
Stat Med. 2014 Oct 30;33(24):4202-14. doi: 10.1002/sim.6223. Epub 2014 Jun 11.
Sequential multiple assignment randomized trials (SMARTs) are increasingly being used to inform clinical and intervention science. In a SMART, each patient is repeatedly randomized over time. Each randomization occurs at a critical decision point in the treatment course. These critical decision points often correspond to milestones in the disease process or other changes in a patient's health status. Thus, the timing and number of randomizations may vary across patients and depend on evolving patient-specific information. This presents unique challenges when analyzing data from a SMART in the presence of missing data. This paper presents the first comprehensive discussion of missing data issues typical of SMART studies: we describe five specific challenges and propose a flexible imputation strategy to facilitate valid statistical estimation and inference using incomplete data from a SMART. To illustrate these contributions, we consider data from the Clinical Antipsychotic Trial of Intervention and Effectiveness, one of the most well-known SMARTs to date.
序贯多重赋权随机试验(SMARTs)越来越多地被用于为临床和干预科学提供信息。在一项SMART中,每位患者会随着时间反复被随机分组。每次随机分组都发生在治疗过程中的关键决策点。这些关键决策点通常对应疾病进程中的里程碑或患者健康状况的其他变化。因此,随机分组的时间和次数可能因患者而异,并取决于不断变化的患者特定信息。当在存在缺失数据的情况下分析来自SMART的数据时,这带来了独特的挑战。本文首次全面讨论了SMART研究中典型的缺失数据问题:我们描述了五个具体挑战,并提出了一种灵活的插补策略,以利用来自SMART的不完整数据促进有效的统计估计和推断。为了说明这些贡献,我们考虑了来自“临床抗精神病药物干预有效性试验”的数据,这是迄今为止最著名的SMART之一。