Williams Sina, Neumann Anne, Bremer Imke, Su Yi, Dräger Gerald, Kasper Cornelia, Behrens Peter
Cluster of Excellence "Hearing4all", Institut für Anorganische Chemie, Leibniz Universität Hannover, Callinstraße 9, 30167, Hannover, Germany.
J Mater Sci Mater Med. 2015 Mar;26(3):125. doi: 10.1007/s10856-015-5409-3. Epub 2015 Feb 18.
Nanoporous silica materials have become a prominent novel class of biomaterials which are typically applied as nanoparticles or thin films. Their large surface area combined with the rich surface chemistry of amorphous silica affords the possibility to equip this material with variable functionalities, also with several different ones on the same particle or coating. Although many studies have shown that nanoporous silica is apparently non-toxic and basically biocompatible, any surface modification may change the surface properties considerably and, therefore, the modified materials should be checked for their biocompatibility at every step. Here we report on different silane-based functionalization strategies, firstly a conventional succinic anhydride-based linker system and, secondly, copper-catalyzed click chemistry, to bind polysialic acid, a polysaccharide important in neurogenesis, onto nanoporous silica nanoparticles (NPSNPs) of MCM-41 type. At each of the different modification steps, the materials are characterized by cell culture experiments. The results show that polysialic acid can be immobilized on the surface of NPSNPs by using different strategies. The cell culture experiments show that the kind of surface immobilization has a strong influence on the toxicity of the material versus the cells. Whereas most modifications appear inoffensive, NPSNPs modified by click reactions are toxic, probably due to residues of the Cu catalyst used in these reactions.
纳米多孔二氧化硅材料已成为一类重要的新型生物材料,通常用作纳米颗粒或薄膜。它们的大表面积与无定形二氧化硅丰富的表面化学性质相结合,使得为这种材料赋予可变功能成为可能,甚至在同一颗粒或涂层上赋予几种不同的功能。尽管许多研究表明纳米多孔二氧化硅显然无毒且基本具有生物相容性,但任何表面改性都可能显著改变表面性质,因此,每一步都应检查改性材料的生物相容性。在此,我们报告了不同的基于硅烷的功能化策略,首先是传统的基于琥珀酸酐的连接体系,其次是铜催化的点击化学,用于将在神经发生中起重要作用的多糖聚唾液酸结合到MCM - 41型纳米多孔二氧化硅纳米颗粒(NPSNP)上。在每个不同的改性步骤中,通过细胞培养实验对材料进行表征。结果表明,聚唾液酸可以通过不同策略固定在NPSNP表面。细胞培养实验表明,表面固定的方式对材料对细胞的毒性有很大影响。虽然大多数改性似乎无害,但通过点击反应改性的NPSNP有毒,这可能是由于这些反应中使用的铜催化剂残留所致。