Suppr超能文献

疑似和早期青光眼纵向逐点视野敏感度的非线性趋势分析

Nonlinear Trend Analysis of Longitudinal Pointwise Visual Field Sensitivity in Suspected and Early Glaucoma.

作者信息

Pathak Manoj, Demirel Shaban, Gardiner Stuart K

机构信息

Department of Mathematics and Statistics, Murray State University, Murray, KY, USA.

Devers Eye Institute, Legacy Health, 1225 NE 2nd Ave, Portland, OR, USA.

出版信息

Transl Vis Sci Technol. 2015 Feb 10;4(1):8. doi: 10.1167/tvst.4.1.8. eCollection 2015 Feb.

Abstract

PURPOSE

We have shown previously that a nonlinear exponential model fits longitudinal series of mean deviation (MD) better than a linear model. This study extends that work to investigate the mode (linear versus nonlinear) of change for pointwise sensitivities.

METHODS

Data from 475 eyes of 244 clinically managed participants were analyzed. Sensitivity estimates at each test location were fitted using two-level linear and nonlinear mixed effects models. Sensitivity on the last test date was forecast using a model fit from the earlier test dates in the series. The means of the absolute prediction errors were compared to assess accuracy, and the root means square (RMS) of the prediction errors were compared to assess precision.

RESULTS

Overall, the exponential model provided a significantly better fit ( < 0.05) to the data at the majority of test locations (69%). The exponential model fitted the data significantly better at 85% of locations in the upper hemifield and 58% of locations in the lower hemifield. The rate of visual field (VF) deterioration in the upper hemifield was more rapid (mean, -0.21 dB/y; range, -0.28 to -0.13) than in the lower hemifield (mean, -0.14 dB/y; range, -0.2 to -0.09).

CONCLUSIONS

An exponential model may more accurately track pointwise VF change, at locations damaged by glaucoma. This was more noticeable in the upper hemifield where the VF changed more rapidly. However, linear and exponential models were similar in their ability to forecast future VF status.

TRANSLATIONAL RELEVANCE

The VF progression appears to accelerate in early glaucoma patients.

摘要

目的

我们之前已经表明,非线性指数模型比线性模型更能拟合平均偏差(MD)的纵向系列数据。本研究扩展了该工作,以调查逐点敏感度的变化模式(线性与非线性)。

方法

对244名临床管理参与者的475只眼睛的数据进行了分析。使用两级线性和非线性混合效应模型拟合每个测试位置的敏感度估计值。使用该系列早期测试日期拟合的模型预测最后测试日期的敏感度。比较绝对预测误差的均值以评估准确性,比较预测误差的均方根(RMS)以评估精确性。

结果

总体而言,指数模型在大多数测试位置(69%)对数据的拟合明显更好(<0.05)。指数模型在85%的上半视野位置和58%的下半视野位置对数据的拟合明显更好。上半视野的视野(VF)恶化速度比下半视野更快(平均,-0.21 dB/年;范围,-0.28至-0.13)(平均,-0.14 dB/年;范围,-0.2至-0.09)。

结论

指数模型可能更准确地跟踪青光眼受损部位的逐点VF变化。这在上半视野中更明显,其中VF变化更快。然而,线性和指数模型在预测未来VF状态的能力方面相似。

转化相关性

早期青光眼患者的VF进展似乎加速。

相似文献

1
Nonlinear Trend Analysis of Longitudinal Pointwise Visual Field Sensitivity in Suspected and Early Glaucoma.
Transl Vis Sci Technol. 2015 Feb 10;4(1):8. doi: 10.1167/tvst.4.1.8. eCollection 2015 Feb.
2
Pointwise and Region-Wise Course of Visual Field Loss in Patients With Glaucoma.
Transl Vis Sci Technol. 2022 Jul 8;11(7):20. doi: 10.1167/tvst.11.7.20.
3
Course of Glaucomatous Visual Field Loss Across the Entire Perimetric Range.
JAMA Ophthalmol. 2016 May 1;134(5):496-502. doi: 10.1001/jamaophthalmol.2016.0118.
4
Enhancement of Visual Field Predictions with Pointwise Exponential Regression (PER) and Pointwise Linear Regression (PLR).
Transl Vis Sci Technol. 2016 Mar 14;5(2):12. doi: 10.1167/tvst.5.2.12. eCollection 2016 Mar.
5
Nonlinear, multilevel mixed-effects approach for modeling longitudinal standard automated perimetry data in glaucoma.
Invest Ophthalmol Vis Sci. 2013 Aug 15;54(8):5505-13. doi: 10.1167/iovs.13-12236.
6
Predictors of Long-Term Visual Field Fluctuation in Glaucoma Patients.
Ophthalmology. 2020 Jun;127(6):739-747. doi: 10.1016/j.ophtha.2019.11.021. Epub 2019 Dec 5.
7
Quantification of Visual Field Variability in Glaucoma: Implications for Visual Field Prediction and Modeling.
Transl Vis Sci Technol. 2019 Oct 17;8(5):25. doi: 10.1167/tvst.8.5.25. eCollection 2019 Sep.
8
Distribution and Rates of Visual Field Loss across Different Disease Stages in Primary Open-Angle Glaucoma.
Ophthalmol Glaucoma. 2018 Jul-Aug;1(1):52-60. doi: 10.1016/j.ogla.2018.05.005. Epub 2018 Jul 3.
9
Association of Intereye Visual-Sensitivity Asymmetry With Progression of Primary Open-Angle Glaucoma.
Invest Ophthalmol Vis Sci. 2021 Jul 1;62(9):4. doi: 10.1167/iovs.62.9.4.
10
Comparison of regression models for serial visual field analysis.
Jpn J Ophthalmol. 2014 Nov;58(6):504-14. doi: 10.1007/s10384-014-0341-5. Epub 2014 Aug 28.

引用本文的文献

2
Visual field progression patterns in the ocular hypertension treatment study correspond to vulnerability regions of the disc.
Eye (Lond). 2024 Jun;38(8):1549-1555. doi: 10.1038/s41433-024-02949-x. Epub 2024 Feb 14.
4
Clinical Applications of Artificial Intelligence in Glaucoma.
J Ophthalmic Vis Res. 2023 Feb 21;18(1):97-112. doi: 10.18502/jovr.v18i1.12730. eCollection 2023 Jan-Mar.
5
Pointwise and Region-Wise Course of Visual Field Loss in Patients With Glaucoma.
Transl Vis Sci Technol. 2022 Jul 8;11(7):20. doi: 10.1167/tvst.11.7.20.
6
The progression rate of spinocerebellar ataxia type 3 varies with disease stage.
J Transl Med. 2022 May 14;20(1):226. doi: 10.1186/s12967-022-03428-1.
9
Functional assessment of glaucoma: Uncovering progression.
Surv Ophthalmol. 2020 Nov-Dec;65(6):639-661. doi: 10.1016/j.survophthal.2020.04.004. Epub 2020 Apr 26.
10
Monitoring Glaucomatous Functional Loss Using an Artificial Intelligence-Enabled Dashboard.
Ophthalmology. 2020 Sep;127(9):1170-1178. doi: 10.1016/j.ophtha.2020.03.008. Epub 2020 Mar 10.

本文引用的文献

1
Signal-to-Noise Ratios for Structural and Functional Tests in Glaucoma.
Transl Vis Sci Technol. 2013 Sep;2(6):3. doi: 10.1167/tvst.2.6.3. Epub 2013 Oct 29.
2
Robust and censored modeling and prediction of progression in glaucomatous visual fields.
Invest Ophthalmol Vis Sci. 2013 Oct 11;54(10):6694-700. doi: 10.1167/iovs.12-11185.
3
Refinement of pointwise linear regression criteria for determining glaucoma progression.
Invest Ophthalmol Vis Sci. 2013 Sep 19;54(9):6234-41. doi: 10.1167/iovs.13-11680.
4
Nonlinear, multilevel mixed-effects approach for modeling longitudinal standard automated perimetry data in glaucoma.
Invest Ophthalmol Vis Sci. 2013 Aug 15;54(8):5505-13. doi: 10.1167/iovs.13-12236.
5
Factors predicting the rate of functional progression in early and suspected glaucoma.
Invest Ophthalmol Vis Sci. 2012 Jun 14;53(7):3598-604. doi: 10.1167/iovs.11-9065.
6
Integrating event- and trend-based analyses to improve detection of glaucomatous visual field progression.
Ophthalmology. 2012 Mar;119(3):458-67. doi: 10.1016/j.ophtha.2011.10.003. Epub 2012 Jan 21.
7
A method to measure and predict rates of regional visual field decay in glaucoma.
Invest Ophthalmol Vis Sci. 2011 Jul 1;52(7):4765-73. doi: 10.1167/iovs.10-6414.
8
Linking structure and function in glaucoma.
Prog Retin Eye Res. 2010 Jul;29(4):249-71. doi: 10.1016/j.preteyeres.2010.02.001. Epub 2010 Mar 11.
9
A framework for comparing structural and functional measures of glaucomatous damage.
Prog Retin Eye Res. 2007 Nov;26(6):688-710. doi: 10.1016/j.preteyeres.2007.08.001. Epub 2007 Aug 21.
10
Type 2 diabetes mellitus and the risk of open-angle glaucoma the Los Angeles Latino Eye Study.
Ophthalmology. 2008 Feb;115(2):227-232.e1. doi: 10.1016/j.ophtha.2007.04.049. Epub 2007 Aug 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验