Suppr超能文献

黑暗中双氧的产生:氧阴离子的歧化酶

Production of dioxygen in the dark: dismutases of oxyanions.

作者信息

DuBois Jennifer L, Ojha Sunil

机构信息

Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA,

出版信息

Met Ions Life Sci. 2015;15:45-87. doi: 10.1007/978-3-319-12415-5_3.

Abstract

O₂-generating reactions are exceedingly rare in biology and difficult to mimic synthetically. Perchlorate-respiring bacteria enzymatically detoxify chlorite (ClO₂(-) ), the end product of the perchlorate (ClO(4)(-) ) respiratory pathway, by rapidly converting it to dioxygen (O₂) and chloride (Cl(-)). This reaction is catalyzed by a heme-containing protein, called chlorite dismutase (Cld), which bears no structural or sequence relationships with known peroxidases or other heme proteins and is part of a large family of proteins with more than one biochemical function. The original assumptions from the 1990s that perchlorate is not a natural product and that perchlorate respiration might be confined to a taxonomically narrow group of species have been called into question, as have the roles of perchlorate respiration and Cld-mediated reactions in the global biogeochemical cycle of chlorine. In this chapter, the chemistry and biochemistry of Cld-mediated O₂generation, as well as the biological and geochemical context of this extraordinary reaction, are described.

摘要

在生物学中,产生氧气的反应极为罕见,且难以通过合成来模拟。利用高氯酸盐呼吸的细菌会通过酶将亚氯酸盐(ClO₂⁻)——高氯酸盐(ClO₄⁻)呼吸途径的终产物——快速转化为氧气(O₂)和氯离子(Cl⁻),从而对其进行解毒。该反应由一种含血红素的蛋白质催化,这种蛋白质称为亚氯酸盐歧化酶(Cld),它与已知的过氧化物酶或其他血红素蛋白在结构或序列上均无关联,并且是一个具有多种生化功能的蛋白质大家族的一部分。20世纪90年代的最初假设认为高氯酸盐不是天然产物,且高氯酸盐呼吸可能仅限于分类学上范围狭窄的一组物种,如今这些假设已受到质疑,高氯酸盐呼吸和Cld介导的反应在全球氯生物地球化学循环中的作用也受到了质疑。在本章中,将描述Cld介导的氧气生成的化学和生物化学,以及这一非凡反应的生物学和地球化学背景。

相似文献

1
Production of dioxygen in the dark: dismutases of oxyanions.
Met Ions Life Sci. 2015;15:45-87. doi: 10.1007/978-3-319-12415-5_3.
2
Measurement of chlorite dismutase activities in perchlorate respiring bacteria.
J Microbiol Methods. 2003 Aug;54(2):239-47. doi: 10.1016/s0167-7012(03)00058-7.
3
Structural features promoting dioxygen production by Dechloromonas aromatica chlorite dismutase.
J Biol Inorg Chem. 2010 Aug;15(6):879-88. doi: 10.1007/s00775-010-0651-0. Epub 2010 Apr 13.
4
Mechanism of chlorite degradation to chloride and dioxygen by the enzyme chlorite dismutase.
Arch Biochem Biophys. 2015 May 15;574:18-26. doi: 10.1016/j.abb.2015.02.031. Epub 2015 Mar 4.
5
Mechanism of and exquisite selectivity for O-O bond formation by the heme-dependent chlorite dismutase.
Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):15654-9. doi: 10.1073/pnas.0804279105. Epub 2008 Oct 7.
7
Understanding the roles of strictly conserved tryptophan residues in O2 producing chlorite dismutases.
Dalton Trans. 2013 Mar 7;42(9):3156-69. doi: 10.1039/c2dt32312e. Epub 2012 Dec 17.
8
Chlorine redox chemistry is widespread in microbiology.
ISME J. 2023 Jan;17(1):70-83. doi: 10.1038/s41396-022-01317-5. Epub 2022 Oct 6.
9
An uncharacterized clade in the DMSO reductase family of molybdenum oxidoreductases is a new type of chlorate reductase.
Environ Microbiol Rep. 2020 Oct;12(5):534-539. doi: 10.1111/1758-2229.12869. Epub 2020 Aug 10.

引用本文的文献

1
Unique Biradical Intermediate in the Mechanism of the Heme Enzyme Chlorite Dismutase.
ACS Catal. 2021 Dec 3;11(23):14533-14544. doi: 10.1021/acscatal.1c03432. Epub 2021 Nov 17.
3
Structure and reactivity of chlorite dismutase nitrosyls.
J Inorg Biochem. 2020 Oct;211:111203. doi: 10.1016/j.jinorgbio.2020.111203. Epub 2020 Jul 26.
4
Microbial Synthesis and Transformation of Inorganic and Organic Chlorine Compounds.
Front Microbiol. 2018 Dec 12;9:3079. doi: 10.3389/fmicb.2018.03079. eCollection 2018.
5
Distinguishing Active Site Characteristics of Chlorite Dismutases with Their Cyanide Complexes.
Biochemistry. 2018 Mar 6;57(9):1501-1516. doi: 10.1021/acs.biochem.7b01278. Epub 2018 Feb 16.
6
Active Sites of O-Evolving Chlorite Dismutases Probed by Halides and Hydroxides and New Iron-Ligand Vibrational Correlations.
Biochemistry. 2017 Aug 29;56(34):4509-4524. doi: 10.1021/acs.biochem.7b00572. Epub 2017 Aug 17.

本文引用的文献

1
2
Structure and evolution of chlorate reduction composite transposons.
mBio. 2013 Aug 6;4(4):e00379-13. doi: 10.1128/mBio.00379-13.
5
6
Understanding the roles of strictly conserved tryptophan residues in O2 producing chlorite dismutases.
Dalton Trans. 2013 Mar 7;42(9):3156-69. doi: 10.1039/c2dt32312e. Epub 2012 Dec 17.
7
Redox thermodynamics of high-spin and low-spin forms of chlorite dismutases with diverse subunit and oligomeric structures.
Biochemistry. 2012 Nov 27;51(47):9501-12. doi: 10.1021/bi3013033. Epub 2012 Nov 14.
8
Microbial metabolism of oxochlorates: a bioenergetic perspective.
Biochim Biophys Acta. 2013 Feb;1827(2):189-97. doi: 10.1016/j.bbabio.2012.06.010. Epub 2012 Jun 23.
9
Impact of subunit and oligomeric structure on the thermal and conformational stability of chlorite dismutases.
Biochim Biophys Acta. 2012 Sep;1824(9):1031-8. doi: 10.1016/j.bbapap.2012.05.012. Epub 2012 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验