Suppr超能文献

利用多回波同时多层(MESMS)功能磁共振成像和多回波独立成分分析增强对类BOLD成分的识别。

Enhanced identification of BOLD-like components with multi-echo simultaneous multi-slice (MESMS) fMRI and multi-echo ICA.

作者信息

Olafsson Valur, Kundu Prantik, Wong Eric C, Bandettini Peter A, Liu Thomas T

机构信息

Neuroscience Imaging Center, University of Pittsburgh, 3025 E Carson St., Pittsburgh, PA 15203, USA.

Brain Imaging Center, Icahn Institute of Medicine at Mt. Sinai, 1470 Madison Ave., 1st floor, New York, NY 10029, USA; Translational and Molecular Imaging Institute, Icahn Institute of Medicine at Mt. Sinai, 1470 Madison Ave., 1st floor, New York, NY 10029, USA.

出版信息

Neuroimage. 2015 May 15;112:43-51. doi: 10.1016/j.neuroimage.2015.02.052. Epub 2015 Mar 2.

Abstract

The recent introduction of simultaneous multi-slice (SMS) acquisitions has enabled the acquisition of blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) data with significantly higher temporal sampling rates. In a parallel development, the use of multi-echo fMRI acquisitions in conjunction with a multi-echo independent component analysis (ME-ICA) approach has been introduced as a means to automatically distinguish functionally-related BOLD signal components from signal artifacts, with significant gains in sensitivity, statistical power, and specificity. In this work, we examine the gains that can be achieved with a combined approach in which data obtained with a multi-echo simultaneous multi-slice (MESMS) acquisition are analyzed with ME-ICA. We find that ME-ICA identifies significantly more BOLD-like components in the MESMS data as compared to data acquired with a conventional multi-echo single-slice acquisition. We demonstrate that the improved performance of MESMS derives from both an increase in the number of temporal samples and the enhanced ability to filter out high-frequency artifacts.

摘要

近期同步多切片(SMS)采集技术的引入,使得能够以显著更高的时间采样率采集血氧水平依赖(BOLD)功能磁共振成像(fMRI)数据。与此同时,多回波fMRI采集结合多回波独立成分分析(ME-ICA)方法的应用,已被作为一种自动从信号伪影中区分功能相关BOLD信号成分的手段引入,在灵敏度、统计功效和特异性方面都有显著提高。在这项工作中,我们研究了一种组合方法所能实现的增益,即使用ME-ICA分析通过多回波同步多切片(MESMS)采集获得的数据。我们发现,与传统多回波单切片采集获得的数据相比,ME-ICA在MESMS数据中识别出显著更多的类BOLD成分。我们证明,MESMS性能的提升源于时间样本数量的增加以及滤除高频伪影能力的增强。

相似文献

1
Enhanced identification of BOLD-like components with multi-echo simultaneous multi-slice (MESMS) fMRI and multi-echo ICA.
Neuroimage. 2015 May 15;112:43-51. doi: 10.1016/j.neuroimage.2015.02.052. Epub 2015 Mar 2.
2
Multi-echo fMRI: A review of applications in fMRI denoising and analysis of BOLD signals.
Neuroimage. 2017 Jul 1;154:59-80. doi: 10.1016/j.neuroimage.2017.03.033. Epub 2017 Mar 29.
4
5
Improved sensitivity and specificity for resting state and task fMRI with multiband multi-echo EPI compared to multi-echo EPI at 7 T.
Neuroimage. 2015 Oct 1;119:352-61. doi: 10.1016/j.neuroimage.2015.06.089. Epub 2015 Jul 8.
6
Contribution of the multi-echo approach in accelerated functional magnetic resonance imaging multiband acquisition.
Hum Brain Mapp. 2022 Feb 15;43(3):955-973. doi: 10.1002/hbm.25698. Epub 2021 Oct 30.
7
Concurrent CBF and BOLD FMRI with dual-echo spiral simultaneous multi-slice acquisitions at 7T.
Neuroimage. 2022 Feb 15;247:118820. doi: 10.1016/j.neuroimage.2021.118820. Epub 2021 Dec 14.
8
BOLD contrast and noise characteristics of densely sampled multi-echo fMRI data.
IEEE Trans Med Imaging. 2011 Sep;30(9):1691-703. doi: 10.1109/TMI.2011.2143424. Epub 2011 Apr 19.
9
Single-shot compensation of image distortions and BOLD contrast optimization using multi-echo EPI for real-time fMRI.
Neuroimage. 2005 Feb 15;24(4):1068-79. doi: 10.1016/j.neuroimage.2004.10.012. Epub 2004 Dec 8.

引用本文的文献

1
Denoising physiological data collected during multi-band, multi-echo EPI sequences.
Apert Neuro. 2023;3. doi: 10.52294/001c.87572. Epub 2023 Aug 28.
3
Multimodal precision MRI of the individual human brain at ultra-high fields.
Sci Data. 2025 Mar 29;12(1):526. doi: 10.1038/s41597-025-04863-7.
4
Differentiating BOLD and non-BOLD signals in fMRI time series using cross-cortical depth delay patterns.
bioRxiv. 2024 Dec 26:2024.12.26.628516. doi: 10.1101/2024.12.26.628516.
5
Increased heterogeneity and task-related reconfiguration of functional connectivity during a lexicosemantic task in autism.
Neuroimage Clin. 2024;44:103694. doi: 10.1016/j.nicl.2024.103694. Epub 2024 Oct 28.
6
Denoising task-correlated head motion from motor-task fMRI data with multi-echo ICA.
Imaging Neurosci (Camb). 2024;2. doi: 10.1162/imag_a_00057. Epub 2024 Jan 5.
7
Next move in movement disorders: neuroimaging protocols for hyperkinetic movement disorders.
Front Hum Neurosci. 2024 Aug 30;18:1406786. doi: 10.3389/fnhum.2024.1406786. eCollection 2024.
9
Denoising task-correlated head motion from motor-task fMRI data with multi-echo ICA.
bioRxiv. 2023 Nov 1:2023.07.19.549746. doi: 10.1101/2023.07.19.549746.

本文引用的文献

1
Differentiating BOLD and non-BOLD signals in fMRI time series from anesthetized rats using multi-echo EPI at 11.7 T.
Neuroimage. 2014 Nov 15;102 Pt 2:861-74. doi: 10.1016/j.neuroimage.2014.07.025. Epub 2014 Jul 24.
2
The spectral diversity of resting-state fluctuations in the human brain.
PLoS One. 2014 Apr 11;9(4):e93375. doi: 10.1371/journal.pone.0093375. eCollection 2014.
3
Functional integration between brain regions at rest occurs in multiple-frequency bands.
Brain Connect. 2015 Feb;5(1):23-34. doi: 10.1089/brain.2013.0210. Epub 2014 Jun 25.
4
ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging.
Neuroimage. 2014 Jul 15;95:232-47. doi: 10.1016/j.neuroimage.2014.03.034. Epub 2014 Mar 21.
5
Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers.
Neuroimage. 2014 Apr 15;90:449-68. doi: 10.1016/j.neuroimage.2013.11.046. Epub 2014 Jan 2.
6
Integrated strategy for improving functional connectivity mapping using multiecho fMRI.
Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):16187-92. doi: 10.1073/pnas.1301725110. Epub 2013 Sep 13.
7
Resting-state fMRI in the Human Connectome Project.
Neuroimage. 2013 Oct 15;80:144-68. doi: 10.1016/j.neuroimage.2013.05.039. Epub 2013 May 20.
8
Beyond Noise: Using Temporal ICA to Extract Meaningful Information from High-Frequency fMRI Signal Fluctuations during Rest.
Front Hum Neurosci. 2013 May 1;7:168. doi: 10.3389/fnhum.2013.00168. eCollection 2013.
9
Tracking dynamic resting-state networks at higher frequencies using MR-encephalography.
Neuroimage. 2013 Jan 15;65:216-22. doi: 10.1016/j.neuroimage.2012.10.015. Epub 2012 Oct 13.
10
Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo EPI.
Neuroimage. 2012 Apr 15;60(3):1759-70. doi: 10.1016/j.neuroimage.2011.12.028. Epub 2011 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验