Suppr超能文献

直微通道中的单流惯性聚焦

Single stream inertial focusing in a straight microchannel.

作者信息

Wang Xiao, Zandi Matthew, Ho Chia-Chi, Kaval Necati, Papautsky Ian

机构信息

BioMicroSystems Laboratory, Department of Electrical Engineering and Computing Systems, University of Cincinnati, 812 Rhodes Hall, ML030, Cincinnati, OH 45221, USA.

出版信息

Lab Chip. 2015 Apr 21;15(8):1812-21. doi: 10.1039/c4lc01462f.

Abstract

In the past two decades, microfluidics has become of great value in precisely aligning cells or microparticles within fluids. Microfluidic techniques use either external forces or sheath flow to focus particulate samples, and face the challenges of complex instrumentation design and limited throughput. The burgeoning field of inertial microfluidics brings single-position focusing functionality at throughput orders of magnitude higher than previously available. However, most inertial microfluidic focusers rely on cross-sectional flow-induced drag force to achieve single-position focusing, which inevitably complicates the device design and operation. In this work, we present an inertial microfluidic focuser that uses inertial lift force as the only driving force to focus microparticles into a single position. We demonstrate single-position focusing of different sized microbeads and cells with 95-100% efficiency, without the need for secondary flow, sheath flow or external forces. We further integrate this device with a laser counting system to form a sheathless flow cytometer, and demonstrated counting of microbeads with 2200 beads s(-1) throughput and 7% coefficient of variation. Cells can be completely recovered and remain viable after passing our integrated cytometry system. Our approach offers a number of benefits, including simplicity in fundamental principle and geometry, convenience in design, modification and integration, flexibility in focusing of different samples, high compatibility with real-world cellular samples as well as high-precision and high-throughput single-position focusing.

摘要

在过去二十年中,微流控技术在精确排列流体中的细胞或微粒方面变得极具价值。微流控技术利用外力或鞘流来聚焦颗粒样本,面临着复杂仪器设计和通量有限的挑战。新兴的惯性微流控领域带来了单位置聚焦功能,其通量比以前高出几个数量级。然而,大多数惯性微流控聚焦器依靠横截面流动诱导的拖曳力来实现单位置聚焦,这不可避免地使设备设计和操作变得复杂。在这项工作中,我们展示了一种惯性微流控聚焦器,它使用惯性升力作为唯一驱动力将微粒聚焦到单个位置。我们展示了不同尺寸微珠和细胞的单位置聚焦,效率为95%-100%,无需二次流、鞘流或外力。我们进一步将该设备与激光计数系统集成,形成了一种无鞘流式细胞仪,并展示了以2200个微珠每秒的通量和7%的变异系数对微珠进行计数。细胞通过我们的集成流式细胞仪系统后可以完全回收并保持活力。我们的方法具有许多优点,包括基本原理和几何结构简单、设计、修改和集成方便、不同样本聚焦灵活、与真实细胞样本高度兼容以及高精度和高通量单位置聚焦。

相似文献

1
Single stream inertial focusing in a straight microchannel.
Lab Chip. 2015 Apr 21;15(8):1812-21. doi: 10.1039/c4lc01462f.
2
Single stream inertial focusing in low aspect-ratio triangular microchannels.
Lab Chip. 2018 Dec 18;19(1):147-157. doi: 10.1039/c8lc00973b.
3
Particle focusing in staged inertial microfluidic devices for flow cytometry.
Anal Chem. 2010 May 1;82(9):3862-7. doi: 10.1021/ac100387b.
5
Inertial microfluidics for sheath-less high-throughput flow cytometry.
Biomed Microdevices. 2010 Apr;12(2):187-95. doi: 10.1007/s10544-009-9374-9.
6
Concentration-controlled particle focusing in spiral elasto-inertial microfluidic devices.
Electrophoresis. 2018 Jan;39(2):417-424. doi: 10.1002/elps.201700150. Epub 2017 Nov 14.
7
Inertial separation in a contraction-expansion array microchannel.
J Chromatogr A. 2011 Jul 8;1218(27):4138-43. doi: 10.1016/j.chroma.2010.11.081. Epub 2010 Dec 5.
9
A low-cost, plug-and-play inertial microfluidic helical capillary device for high-throughput flow cytometry.
Biomicrofluidics. 2017 Jan 30;11(1):014107. doi: 10.1063/1.4974903. eCollection 2017 Jan.
10
Inertial microfluidics in parallel channels for high-throughput applications.
Lab Chip. 2012 Nov 21;12(22):4644-50. doi: 10.1039/c2lc40241f.

引用本文的文献

1
Effects of Shear and Extensional Stresses on Cells: Investigation in a Spiral Microchannel and Contraction-Expansion Arrays.
ACS Biomater Sci Eng. 2025 Jun 9;11(6):3249-3261. doi: 10.1021/acsbiomaterials.5c00555. Epub 2025 May 28.
2
Vortex sorting of rare particles/cells in microcavities: A review.
Biomicrofluidics. 2024 Apr 1;18(2):021504. doi: 10.1063/5.0174938. eCollection 2024 Mar.
3
Elasto-inertial microfluidic separation of microspheres with submicron resolution at high-throughput.
Microsyst Nanoeng. 2024 Jan 22;10:15. doi: 10.1038/s41378-023-00633-w. eCollection 2024.
4
Sheathless inertial particle focusing methods within microfluidic devices: a review.
Front Bioeng Biotechnol. 2024 Jan 8;11:1331968. doi: 10.3389/fbioe.2023.1331968. eCollection 2023.
5
A review on inertial microfluidic fabrication methods.
Biomicrofluidics. 2023 Oct 19;17(5):051504. doi: 10.1063/5.0163970. eCollection 2023 Sep.
6
Simplified 3D hydrodynamic flow focusing for lab-on-chip single particle study.
Sci Rep. 2023 Sep 6;13(1):14671. doi: 10.1038/s41598-023-40430-z.
7
Continuous separation of bacterial cells from large debris using a spiral microfluidic device.
Biomicrofluidics. 2023 Aug 9;17(4):044104. doi: 10.1063/5.0159254. eCollection 2023 Jul.
8
Trapping of a Single Microparticle Using AC Dielectrophoresis Forces in a Microfluidic Chip.
Micromachines (Basel). 2023 Jan 8;14(1):159. doi: 10.3390/mi14010159.
9
Viscoelastic microfluidics: progress and challenges.
Microsyst Nanoeng. 2020 Dec 14;6:113. doi: 10.1038/s41378-020-00218-x. eCollection 2020.
10
3D particle transport in multichannel microfluidic networks with rough surfaces.
Sci Rep. 2020 Aug 14;10(1):13848. doi: 10.1038/s41598-020-70728-1.

本文引用的文献

1
Inertial microfluidic physics.
Lab Chip. 2014 Aug 7;14(15):2739-61. doi: 10.1039/c4lc00128a. Epub 2014 Jun 10.
2
Inertial focusing in microfluidics.
Annu Rev Biomed Eng. 2014 Jul 11;16:371-96. doi: 10.1146/annurev-bioeng-121813-120704. Epub 2014 May 29.
4
Microfluidic, marker-free isolation of circulating tumor cells from blood samples.
Nat Protoc. 2014 Mar;9(3):694-710. doi: 10.1038/nprot.2014.044. Epub 2014 Feb 27.
5
Standing surface acoustic wave (SSAW)-based microfluidic cytometer.
Lab Chip. 2014 Mar 7;14(5):916-23. doi: 10.1039/c3lc51139a.
6
Continuous separation of blood cells in spiral microfluidic devices.
Biomicrofluidics. 2013 Sep 5;7(5):54101. doi: 10.1063/1.4819275. eCollection 2013.
8
Sub-micrometer-precision, three-dimensional (3D) hydrodynamic focusing via "microfluidic drifting".
Lab Chip. 2014 Jan 21;14(2):415-23. doi: 10.1039/c3lc50810b. Epub 2013 Nov 28.
9
Enhanced size-dependent trapping of particles using microvortices.
Microfluid Nanofluidics. 2013 Nov 1;15(5). doi: 10.1007/s10404-013-1176-y.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验