Schmied Roland, Fowlkes Jason D, Winkler Robert, Rack Phillip D, Plank Harald
Graz Centre for Electron Microscopy, 8010 Graz, Austria.
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA ; Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA.
Beilstein J Nanotechnol. 2015 Feb 16;6:462-71. doi: 10.3762/bjnano.6.47. eCollection 2015.
The present study explores lateral broadening effects of 3D structures fabricated through focused electron beam induced deposition using MeCpPt(IV)Me3 precursor. In particular, the scaling behavior of proximity effects as a function of the primary electron energy and the deposit height is investigated through experiments and validated through simulations. Correlated Kelvin force microscopy and conductive atomic force microscopy measurements identified conductive and non-conductive proximity regions. It was determined that the highest primary electron energies enable the highest edge sharpness while lower energies contain a complex convolution of broadening effects. Moreover, it is demonstrated that intermediate energies lead to even more complex proximity effects that significantly reduce lateral edge sharpness and thus should be avoided if desiring high lateral resolution.
本研究探讨了使用甲基环戊二烯基铂(IV)三甲基(MeCpPt(IV)Me3)前驱体通过聚焦电子束诱导沉积制造的三维结构的横向展宽效应。具体而言,通过实验研究了邻近效应随一次电子能量和沉积高度变化的标度行为,并通过模拟进行了验证。相关的开尔文力显微镜和导电原子力显微镜测量确定了导电和非导电邻近区域。结果表明,最高的一次电子能量能够实现最高的边缘锐度,而较低的能量则包含展宽效应的复杂卷积。此外,还证明了中等能量会导致更复杂的邻近效应,从而显著降低横向边缘锐度,因此,如果需要高横向分辨率,应避免使用中等能量。