Kranthi Kumar V, Dhar Sukanya, Choudhury Tanushree H, Shivashankar S A, Raghavan Srinivasan
Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
Nanoscale. 2015 May 7;7(17):7802-10. doi: 10.1039/c4nr07080a.
Layered transition metal dichalcogenides (TMDs), such as MoS2, are candidate materials for next generation 2-D electronic and optoelectronic devices. The ability to grow uniform, crystalline, atomic layers over large areas is the key to developing such technology. We report a chemical vapor deposition (CVD) technique which yields n-layered MoS2 on a variety of substrates. A generic approach suitable to all TMDs, involving thermodynamic modeling to identify the appropriate CVD process window, and quantitative control of the vapor phase supersaturation, is demonstrated. All reactant sources in our method are outside the growth chamber, a significant improvement over vapor-based methods for atomic layers reported to date. The as-deposited layers are p-type, due to Mo deficiency, with field effect and Hall hole mobilities of up to 2.4 cm(2) V(-1) s(-1) and 44 cm(2) V(-1) s(-1) respectively. These are among the best reported yet for CVD MoS2.
层状过渡金属二硫属化物(TMDs),如二硫化钼(MoS2),是下一代二维电子和光电器件的候选材料。能够在大面积上生长均匀、结晶的原子层是开发此类技术的关键。我们报道了一种化学气相沉积(CVD)技术,该技术可在各种衬底上生长出n层MoS2。展示了一种适用于所有TMDs的通用方法,该方法涉及热力学建模以确定合适的CVD工艺窗口,并对气相过饱和度进行定量控制。我们方法中的所有反应物源都在生长室外部,这是对迄今报道的基于气相的原子层方法的重大改进。由于钼缺乏,沉积的层为p型,场效应和霍尔空穴迁移率分别高达2.4 cm² V⁻¹ s⁻¹和44 cm² V⁻¹ s⁻¹。这些是CVD MoS2迄今报道的最佳结果之一。