Diaz Estefania Munoz
German Aerospace Center (DLR), Institute of Communications and Navigation, Oberpfaffenhofen, 82234 Wessling, Germany.
Sensors (Basel). 2015 Apr 17;15(4):9156-78. doi: 10.3390/s150409156.
Inertial navigation systems use dead-reckoning to estimate the pedestrian's position. There are two types of pedestrian dead-reckoning, the strapdown algorithm and the step-and-heading approach. Unlike the strapdown algorithm, which consists of the double integration of the three orthogonal accelerometer readings, the step-and-heading approach lacks the vertical displacement estimation. We propose the first step-and-heading approach based on unaided inertial data solving 3D positioning. We present a step detector for steps up and down and a novel vertical displacement estimator. Our navigation system uses the sensor introduced in the front pocket of the trousers, a likely location of a smartphone. The proposed algorithms are based on the opening angle of the leg or pitch angle. We analyzed our step detector and compared it with the state-of-the-art, as well as our already proposed step length estimator. Lastly, we assessed our vertical displacement estimator in a real-world scenario. We found that our algorithms outperform the literature step and heading algorithms and solve 3D positioning using unaided inertial data. Additionally, we found that with the pitch angle, five activities are distinguishable: standing, sitting, walking, walking up stairs and walking down stairs. This information complements the pedestrian location and is of interest for applications, such as elderly care.
惯性导航系统使用航位推算来估计行人的位置。行人航位推算有两种类型,捷联算法和步长与航向方法。与由三个正交加速度计读数的双重积分组成的捷联算法不同,步长与航向方法缺乏垂直位移估计。我们提出了第一种基于自主惯性数据解决三维定位的步长与航向方法。我们提出了一种用于上下步的步长检测器和一种新颖的垂直位移估计器。我们的导航系统使用放置在裤子前口袋中的传感器,这是智能手机可能的放置位置。所提出的算法基于腿部的张角或俯仰角。我们分析了我们的步长检测器,并将其与现有技术以及我们已经提出的步长估计器进行了比较。最后,我们在实际场景中评估了我们的垂直位移估计器。我们发现我们的算法优于文献中的步长和航向算法,并使用自主惯性数据解决了三维定位问题。此外,我们发现利用俯仰角,可以区分五种活动:站立、坐着、行走、上楼梯和下楼梯。这些信息补充了行人的位置,并且对于诸如老年护理等应用很有意义。