Suppr超能文献

基于从高光谱显微图像中提取的共同特征识别胃癌细胞。

Identification of cancerous gastric cells based on common features extracted from hyperspectral microscopic images.

作者信息

Zhu Siqi, Su Kang, Liu Yumeng, Yin Hao, Li Zhen, Huang Furong, Chen Zhenqiang, Chen Weidong, Zhang Ge, Chen Yihong

机构信息

Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou, Guangdong 510632, China ; Department of Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 510632, China.

Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.

出版信息

Biomed Opt Express. 2015 Mar 4;6(4):1135-45. doi: 10.1364/BOE.6.001135. eCollection 2015 Apr 1.

Abstract

We construct a microscopic hyperspectral imaging system to distinguish between normal and cancerous gastric cells. We study common transmission-spectra features that only emerge when the samples are dyed with hematoxylin and eosin (H&E) stain. Subsequently, we classify the obtained visible-range transmission spectra of the samples into three zones. Distinct features are observed in the spectral responses between the normal and cancerous cell nuclei in each zone, which depend on the pH level of the cell nucleus. Cancerous gastric cells are precisely identified according to these features. The average cancer-cell identification accuracy obtained with a backpropagation algorithm program trained with these features is 95%.

摘要

我们构建了一个微观高光谱成像系统,用于区分正常和癌变的胃细胞。我们研究了仅在样本用苏木精和伊红(H&E)染色时才会出现的常见透射光谱特征。随后,我们将获得的样本可见光谱分为三个区域。在每个区域中,正常和癌细胞核的光谱响应呈现出明显特征,这些特征取决于细胞核的pH值。根据这些特征可精确识别出癌变的胃细胞。使用基于这些特征训练的反向传播算法程序获得的癌细胞识别平均准确率为95%。

相似文献

3
Tumor tissue classification based on micro-hyperspectral technology and deep learning.基于显微高光谱技术和深度学习的肿瘤组织分类
Biomed Opt Express. 2019 Nov 19;10(12):6370-6389. doi: 10.1364/BOE.10.006370. eCollection 2019 Dec 1.

引用本文的文献

7
Tumor tissue classification based on micro-hyperspectral technology and deep learning.基于显微高光谱技术和深度学习的肿瘤组织分类
Biomed Opt Express. 2019 Nov 19;10(12):6370-6389. doi: 10.1364/BOE.10.006370. eCollection 2019 Dec 1.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验