Suppr超能文献

高质量氧化石墨烯纳米卷的制备及其在超级电容器中的应用。

Fabrication of high-quality graphene oxide nanoscrolls and application in supercapacitor.

作者信息

Fan Tianju, Zeng Wenjin, Niu Qiaoli, Tong Songzhao, Cai Kaiyu, Liu Yidong, Huang Wei, Min Yong, Epstein Arthur J

机构信息

Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210046 China.

State Key Laboratory of Organic Electronics and Information Displays and Fountain Global Photoelectric Technology Co., Ltd. 2 Xinyue Road, Yancheng, Jiangsu 224000 China.

出版信息

Nanoscale Res Lett. 2015 Apr 21;10:192. doi: 10.1186/s11671-015-0894-3. eCollection 2015.

Abstract

We reported a simple and effective way of fabricating one-dimensional (1D) graphene oxide nanoscrolls (GONS) from graphene oxide (GO) sheets through shock cooling by liquid nitrogen. The corresponding mechanism of rolling was proposed. One possibility is the formation of ice crystals during the shock cooling process in liquid nitrogen to be the driving force. The other might be due to the uneven stress of the sheets inside or outside ice during the lyophilization. After reducing, graphene nanoscrolls (GNS) exhibited good structural stability, high specific surface area, and high specific capacitance. The capacitance properties were investigated by cyclic voltammetry, galvanostatic charge-discharge, and electrical impedance spectroscopy. A specific capacity of 156 F/g for the GNS at the current density of 1.0 A/g was obtained comparing with the specific capacity of 108 F/g for graphene sheets. Those results indicated that GNS-based rolling structure could be a kind of promising electrode material for supercapacitors and batteries.

摘要

我们报道了一种通过液氮冲击冷却从氧化石墨烯(GO)片材制备一维(1D)氧化石墨烯纳米卷(GONS)的简单有效方法。提出了相应的卷曲机制。一种可能性是在液氮冲击冷却过程中形成冰晶作为驱动力。另一种可能是由于冻干过程中冰内外片材的应力不均匀。还原后,石墨烯纳米卷(GNS)表现出良好的结构稳定性、高比表面积和高比电容。通过循环伏安法、恒电流充放电和电化学阻抗谱研究了电容性能。与石墨烯片材108 F/g的比容量相比,GNS在1.0 A/g电流密度下的比容量为156 F/g。这些结果表明,基于GNS的卷曲结构可能是一种有前途的超级电容器和电池电极材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4892/4420763/21fad306c328/11671_2015_894_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验