Suppr超能文献

基于核近似贝叶斯计算的系统动力学推断及其在HIV流行病学中的应用

Phylodynamic Inference with Kernel ABC and Its Application to HIV Epidemiology.

作者信息

Poon Art F Y

机构信息

BC Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada Department of Medicine, University of British Columbia, Vancouver, BC, Canada Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada

出版信息

Mol Biol Evol. 2015 Sep;32(9):2483-95. doi: 10.1093/molbev/msv123. Epub 2015 May 25.

Abstract

The shapes of phylogenetic trees relating virus populations are determined by the adaptation of viruses within each host, and by the transmission of viruses among hosts. Phylodynamic inference attempts to reverse this flow of information, estimating parameters of these processes from the shape of a virus phylogeny reconstructed from a sample of genetic sequences from the epidemic. A key challenge to phylodynamic inference is quantifying the similarity between two trees in an efficient and comprehensive way. In this study, I demonstrate that a new distance measure, based on a subset tree kernel function from computational linguistics, confers a significant improvement over previous measures of tree shape for classifying trees generated under different epidemiological scenarios. Next, I incorporate this kernel-based distance measure into an approximate Bayesian computation (ABC) framework for phylodynamic inference. ABC bypasses the need for an analytical solution of model likelihood, as it only requires the ability to simulate data from the model. I validate this "kernel-ABC" method for phylodynamic inference by estimating parameters from data simulated under a simple epidemiological model. Results indicate that kernel-ABC attained greater accuracy for parameters associated with virus transmission than leading software on the same data sets. Finally, I apply the kernel-ABC framework to study a recent outbreak of a recombinant HIV subtype in China. Kernel-ABC provides a versatile framework for phylodynamic inference because it can fit a broader range of models than methods that rely on the computation of exact likelihoods.

摘要

与病毒群体相关的系统发育树的形状,由每种宿主内病毒的适应性以及病毒在宿主间的传播所决定。系统发育动力学推断试图逆转这种信息流,从根据疫情中的基因序列样本重建的病毒系统发育形状来估计这些过程的参数。系统发育动力学推断的一个关键挑战是以高效且全面的方式量化两棵树之间的相似性。在本研究中,我证明了一种基于计算语言学中的子集树核函数的新距离度量,相较于先前用于对在不同流行病学场景下生成的树进行分类的树形度量有显著改进。接下来,我将这种基于核的距离度量纳入用于系统发育动力学推断的近似贝叶斯计算(ABC)框架。ABC绕过了对模型似然性解析解的需求,因为它只需要具备从模型模拟数据的能力。我通过从在简单流行病学模型下模拟的数据估计参数,验证了这种用于系统发育动力学推断的“核ABC”方法。结果表明,在相同数据集上,核ABC在与病毒传播相关的参数估计方面比领先软件具有更高的准确性。最后,我应用核ABC框架来研究中国近期爆发的一种重组HIV亚型。核ABC为系统发育动力学推断提供了一个通用框架,因为与依赖精确似然性计算的方法相比,它可以拟合更广泛的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b280/4540972/6a8021016cd6/msv123f1p.jpg

相似文献

1
Phylodynamic Inference with Kernel ABC and Its Application to HIV Epidemiology.
Mol Biol Evol. 2015 Sep;32(9):2483-95. doi: 10.1093/molbev/msv123. Epub 2015 May 25.
2
Inference of Transmission Network Structure from HIV Phylogenetic Trees.
PLoS Comput Biol. 2017 Jan 13;13(1):e1005316. doi: 10.1371/journal.pcbi.1005316. eCollection 2017 Jan.
3
Phylodynamic Inference across Epidemic Scales.
Mol Biol Evol. 2017 May 1;34(5):1276-1288. doi: 10.1093/molbev/msx077.
4
Phylodynamic inference and model assessment with approximate bayesian computation: influenza as a case study.
PLoS Comput Biol. 2012;8(12):e1002835. doi: 10.1371/journal.pcbi.1002835. Epub 2012 Dec 27.
5
Reconstructing contact network parameters from viral phylogenies.
Virus Evol. 2016 Oct 30;2(2):vew029. doi: 10.1093/ve/vew029. eCollection 2016 Jul.
7
On the use of kernel approximate Bayesian computation to infer population history.
Genes Genet Syst. 2015;90(3):153-62. doi: 10.1266/ggs.90.153.
8
Inferring epidemiological dynamics with Bayesian coalescent inference: the merits of deterministic and stochastic models.
Genetics. 2015 Feb;199(2):595-607. doi: 10.1534/genetics.114.172791. Epub 2014 Dec 19.
10
Fundamentals and Recent Developments in Approximate Bayesian Computation.
Syst Biol. 2017 Jan 1;66(1):e66-e82. doi: 10.1093/sysbio/syw077.

引用本文的文献

1
Phylogenetics and molecular evolution to understand and curb the HIV pandemic.
Nat Rev Microbiol. 2025 Jun 30. doi: 10.1038/s41579-025-01202-w.
2
Phylogenetic identification of influenza virus candidates for seasonal vaccines.
Sci Adv. 2023 Nov 3;9(44):eabp9185. doi: 10.1126/sciadv.abp9185.
3
Statistical Challenges in Tracking the Evolution of SARS-CoV-2.
Stat Sci. 2022 May;37(2):162-182. doi: 10.1214/22-sts853. Epub 2022 May 16.
4
Network science inspires novel tree shape statistics.
PLoS One. 2021 Dec 23;16(12):e0259877. doi: 10.1371/journal.pone.0259877. eCollection 2021.
5
Markov genealogy processes.
Theor Popul Biol. 2022 Feb;143:77-91. doi: 10.1016/j.tpb.2021.11.003. Epub 2021 Dec 9.
6
Predicting the short-term success of human influenza virus variants with machine learning.
Proc Biol Sci. 2020 Apr 8;287(1924):20200319. doi: 10.1098/rspb.2020.0319.
7
Phylogenies from dynamic networks.
PLoS Comput Biol. 2019 Feb 26;15(2):e1006761. doi: 10.1371/journal.pcbi.1006761. eCollection 2019 Feb.
8
An open-source k-mer based machine learning tool for fast and accurate subtyping of HIV-1 genomes.
PLoS One. 2018 Nov 14;13(11):e0206409. doi: 10.1371/journal.pone.0206409. eCollection 2018.
9
Bayesian phylodynamic inference with complex models.
PLoS Comput Biol. 2018 Nov 13;14(11):e1006546. doi: 10.1371/journal.pcbi.1006546. eCollection 2018 Nov.
10
Phylodynamic Model Adequacy Using Posterior Predictive Simulations.
Syst Biol. 2019 Mar 1;68(2):358-364. doi: 10.1093/sysbio/syy048.

本文引用的文献

1
SEARCHING FOR EVOLUTIONARY PATTERNS IN THE SHAPE OF A PHYLOGENETIC TREE.
Evolution. 1993 Aug;47(4):1171-1181. doi: 10.1111/j.1558-5646.1993.tb02144.x.
2
Eight challenges in phylodynamic inference.
Epidemics. 2015 Mar;10:88-92. doi: 10.1016/j.epidem.2014.09.001. Epub 2014 Sep 16.
3
AliView: a fast and lightweight alignment viewer and editor for large datasets.
Bioinformatics. 2014 Nov 15;30(22):3276-8. doi: 10.1093/bioinformatics/btu531. Epub 2014 Aug 5.
4
Phylogenetic tree shapes resolve disease transmission patterns.
Evol Med Public Health. 2014 Jun 9;2014(1):96-108. doi: 10.1093/emph/eou018.
5
Timing and order of transmission events is not directly reflected in a pathogen phylogeny.
Mol Biol Evol. 2014 Sep;31(9):2472-82. doi: 10.1093/molbev/msu179. Epub 2014 May 29.
6
Phylodynamic inference for structured epidemiological models.
PLoS Comput Biol. 2014 Apr 17;10(4):e1003570. doi: 10.1371/journal.pcbi.1003570. eCollection 2014 Apr.
7
BEAST 2: a software platform for Bayesian evolutionary analysis.
PLoS Comput Biol. 2014 Apr 10;10(4):e1003537. doi: 10.1371/journal.pcbi.1003537. eCollection 2014 Apr.
8
The genealogical population dynamics of HIV-1 in a large transmission chain: bridging within and among host evolutionary rates.
PLoS Comput Biol. 2014 Apr 3;10(4):e1003505. doi: 10.1371/journal.pcbi.1003505. eCollection 2014 Apr.
9
Simultaneous reconstruction of evolutionary history and epidemiological dynamics from viral sequences with the birth-death SIR model.
J R Soc Interface. 2014 Feb 26;11(94):20131106. doi: 10.1098/rsif.2013.1106. Print 2014 May 6.
10
RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.
Bioinformatics. 2014 May 1;30(9):1312-3. doi: 10.1093/bioinformatics/btu033. Epub 2014 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验