Suppr超能文献

贝叶斯系统发育动力学推断与复杂模型。

Bayesian phylodynamic inference with complex models.

机构信息

Department of Infectious Disease Epidemiology and the MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom.

出版信息

PLoS Comput Biol. 2018 Nov 13;14(11):e1006546. doi: 10.1371/journal.pcbi.1006546. eCollection 2018 Nov.

Abstract

Population genetic modeling can enhance Bayesian phylogenetic inference by providing a realistic prior on the distribution of branch lengths and times of common ancestry. The parameters of a population genetic model may also have intrinsic importance, and simultaneous estimation of a phylogeny and model parameters has enabled phylodynamic inference of population growth rates, reproduction numbers, and effective population size through time. Phylodynamic inference based on pathogen genetic sequence data has emerged as useful supplement to epidemic surveillance, however commonly-used mechanistic models that are typically fitted to non-genetic surveillance data are rarely fitted to pathogen genetic data due to a dearth of software tools, and the theory required to conduct such inference has been developed only recently. We present a framework for coalescent-based phylogenetic and phylodynamic inference which enables highly-flexible modeling of demographic and epidemiological processes. This approach builds upon previous structured coalescent approaches and includes enhancements for computational speed, accuracy, and stability. A flexible markup language is described for translating parametric demographic or epidemiological models into a structured coalescent model enabling simultaneous estimation of demographic or epidemiological parameters and time-scaled phylogenies. We demonstrate the utility of these approaches by fitting compartmental epidemiological models to Ebola virus and Influenza A virus sequence data, demonstrating how important features of these epidemics, such as the reproduction number and epidemic curves, can be gleaned from genetic data. These approaches are provided as an open-source package PhyDyn for the BEAST2 phylogenetics platform.

摘要

群体遗传建模可以通过对分支长度和共同祖先时间的分布提供现实的先验来增强贝叶斯系统发育推断。群体遗传模型的参数也可能具有内在的重要性,同时估计系统发育和模型参数已经能够通过时间推断种群增长率、繁殖数和有效种群大小的系统发育动态。基于病原体遗传序列数据的系统发育动态推断已成为流行监测的有用补充,然而,由于缺乏软件工具,通常拟合非遗传监测数据的常用机制模型很少拟合病原体遗传数据,并且进行这种推断所需的理论最近才得到发展。我们提出了一种基于合并的系统发育和系统发育动态推断框架,该框架能够对人口统计学和流行病学过程进行高度灵活的建模。这种方法建立在以前的结构合并方法的基础上,并包括提高计算速度、准确性和稳定性的增强功能。描述了一种灵活的标记语言,用于将参数人口统计学或流行病学模型转换为结构合并模型,从而能够同时估计人口统计学或流行病学参数和时间标度的系统发育。我们通过将 compartmental 流行病学模型拟合到埃博拉病毒和甲型流感病毒序列数据来演示这些方法的实用性,展示了这些流行病的重要特征,如繁殖数和流行曲线,如何从遗传数据中获得。这些方法作为 BEAST2 系统发育平台的 PhyDyn 开源软件包提供。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验