Suppr超能文献

迭代实验设计指导光诱导基因表达电路的表征。

Iterative experiment design guides the characterization of a light-inducible gene expression circuit.

作者信息

Ruess Jakob, Parise Francesca, Milias-Argeitis Andreas, Khammash Mustafa, Lygeros John

机构信息

Automatic Control Laboratory, ETH Zurich, CH-8092 Zurich, Switzerland;

Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland.

出版信息

Proc Natl Acad Sci U S A. 2015 Jun 30;112(26):8148-53. doi: 10.1073/pnas.1423947112. Epub 2015 Jun 17.

Abstract

Systems biology rests on the idea that biological complexity can be better unraveled through the interplay of modeling and experimentation. However, the success of this approach depends critically on the informativeness of the chosen experiments, which is usually unknown a priori. Here, we propose a systematic scheme based on iterations of optimal experiment design, flow cytometry experiments, and Bayesian parameter inference to guide the discovery process in the case of stochastic biochemical reaction networks. To illustrate the benefit of our methodology, we apply it to the characterization of an engineered light-inducible gene expression circuit in yeast and compare the performance of the resulting model with models identified from nonoptimal experiments. In particular, we compare the parameter posterior distributions and the precision to which the outcome of future experiments can be predicted. Moreover, we illustrate how the identified stochastic model can be used to determine light induction patterns that make either the average amount of protein or the variability in a population of cells follow a desired profile. Our results show that optimal experiment design allows one to derive models that are accurate enough to precisely predict and regulate the protein expression in heterogeneous cell populations over extended periods of time.

摘要

系统生物学基于这样一种观点,即通过建模与实验的相互作用能够更好地揭示生物复杂性。然而,这种方法的成功与否关键取决于所选实验的信息量,而这通常在事先是未知的。在此,我们提出一种基于最优实验设计、流式细胞术实验和贝叶斯参数推断迭代的系统方案,以指导随机生化反应网络情况下的发现过程。为了说明我们方法的益处,我们将其应用于酵母中工程化光诱导基因表达电路的表征,并将所得模型的性能与从非最优实验中识别出的模型进行比较。特别是,我们比较了参数后验分布以及预测未来实验结果的精度。此外,我们说明了如何使用所识别的随机模型来确定光诱导模式,以使蛋白质的平均量或细胞群体中的变异性遵循期望的分布。我们的结果表明,最优实验设计能够得出足够准确的模型,从而在较长时间内精确预测和调节异质细胞群体中的蛋白质表达。

相似文献

2

引用本文的文献

4
Platforms for Optogenetic Stimulation and Feedback Control.光遗传学刺激与反馈控制平台
Front Bioeng Biotechnol. 2022 Jun 8;10:918917. doi: 10.3389/fbioe.2022.918917. eCollection 2022.
6
10
In situ characterisation and manipulation of biological systems with Chi.Bio.利用 Chi.Bio 对生物系统进行原位表征和操控
PLoS Biol. 2020 Jul 30;18(7):e3000794. doi: 10.1371/journal.pbio.3000794. eCollection 2020 Jul.

本文引用的文献

4
6
Maximizing the information content of experiments in systems biology.最大化系统生物学实验的信息量。
PLoS Comput Biol. 2013;9(1):e1002888. doi: 10.1371/journal.pcbi.1002888. Epub 2013 Jan 31.
10
Moment-based inference predicts bimodality in transient gene expression.基于矩的推断预测瞬时基因表达的双峰性。
Proc Natl Acad Sci U S A. 2012 May 22;109(21):8340-5. doi: 10.1073/pnas.1200161109. Epub 2012 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验