Automatic Control Lab, ETH Zurich, Zurich, Switzerland.
1] Automatic Control Lab, ETH Zurich, Zurich, Switzerland. [2] Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.
Nat Methods. 2014 Feb;11(2):197-202. doi: 10.1038/nmeth.2794. Epub 2014 Jan 12.
Mathematical methods combined with measurements of single-cell dynamics provide a means to reconstruct intracellular processes that are only partly or indirectly accessible experimentally. To obtain reliable reconstructions, the pooling of measurements from several cells of a clonal population is mandatory. However, cell-to-cell variability originating from diverse sources poses computational challenges for such process reconstruction. We introduce a scalable Bayesian inference framework that properly accounts for population heterogeneity. The method allows inference of inaccessible molecular states and kinetic parameters; computation of Bayes factors for model selection; and dissection of intrinsic, extrinsic and technical noise. We show how additional single-cell readouts such as morphological features can be included in the analysis. We use the method to reconstruct the expression dynamics of a gene under an inducible promoter in yeast from time-lapse microscopy data.
数学方法与单细胞动力学的测量相结合,为重建仅部分或间接可通过实验获得的细胞内过程提供了一种手段。为了获得可靠的重建,必须对克隆群体的多个细胞的测量值进行汇总。然而,源自多种来源的细胞间变异性对这种过程重建提出了计算上的挑战。我们引入了一个可扩展的贝叶斯推断框架,该框架可以正确地考虑群体异质性。该方法允许对不可访问的分子状态和动力学参数进行推断;用于模型选择的贝叶斯因子的计算;以及内在、外在和技术噪声的剖析。我们展示了如何在分析中纳入额外的单细胞读数,如形态特征。我们使用该方法从延时显微镜数据中重建酵母中诱导启动子下基因的表达动力学。