Suppr超能文献

用于心脏组织工程的支架的化学和生物功能化策略:综述

Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review.

作者信息

Tallawi Marwa, Rosellini Elisabetta, Barbani Niccoletta, Cascone Maria Grazia, Rai Ranjana, Saint-Pierre Guillaume, Boccaccini Aldo R

出版信息

J R Soc Interface. 2015 Jul 6;12(108):20150254. doi: 10.1098/rsif.2015.0254.

Abstract

The development of biomaterials for cardiac tissue engineering (CTE) is challenging, primarily owing to the requirement of achieving a surface with favourable characteristics that enhances cell attachment and maturation. The biomaterial surface plays a crucial role as it forms the interface between the scaffold (or cardiac patch) and the cells. In the field of CTE, synthetic polymers (polyglycerol sebacate, polyethylene glycol, polyglycolic acid, poly-l-lactide, polyvinyl alcohol, polycaprolactone, polyurethanes and poly(N-isopropylacrylamide)) have been proven to exhibit suitable biodegradable and mechanical properties. Despite the fact that they show the required biocompatible behaviour, most synthetic polymers exhibit poor cell attachment capability. These synthetic polymers are mostly hydrophobic and lack cell recognition sites, limiting their application. Therefore, biofunctionalization of these biomaterials to enhance cell attachment and cell material interaction is being widely investigated. There are numerous approaches for functionalizing a material, which can be classified as mechanical, physical, chemical and biological. In this review, recent studies reported in the literature to functionalize scaffolds in the context of CTE, are discussed. Surface, morphological, chemical and biological modifications are introduced and the results of novel promising strategies and techniques are discussed.

摘要

用于心脏组织工程(CTE)的生物材料的开发具有挑战性,主要是因为需要获得具有良好特性的表面,以增强细胞附着和成熟。生物材料表面起着至关重要的作用,因为它形成了支架(或心脏补片)与细胞之间的界面。在CTE领域,合成聚合物(聚癸二酸甘油酯、聚乙二醇、聚乙醇酸、聚左旋乳酸、聚乙烯醇、聚己内酯、聚氨酯和聚(N-异丙基丙烯酰胺))已被证明具有合适的可生物降解和机械性能。尽管它们表现出所需的生物相容性,但大多数合成聚合物的细胞附着能力较差。这些合成聚合物大多具有疏水性且缺乏细胞识别位点,限制了它们的应用。因此,对这些生物材料进行生物功能化以增强细胞附着和细胞与材料的相互作用正在得到广泛研究。对材料进行功能化有多种方法,可分为机械、物理、化学和生物方法。在本综述中,将讨论文献中报道的近期在CTE背景下对支架进行功能化的研究。介绍了表面、形态、化学和生物修饰,并讨论了新的有前景的策略和技术的结果。

相似文献

1
2
Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration.
Mater Sci Eng C Mater Biol Appl. 2020 May;110:110698. doi: 10.1016/j.msec.2020.110698. Epub 2020 Jan 29.
3
Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering.
J Mater Sci Mater Med. 2019 Apr 29;30(5):53. doi: 10.1007/s10856-019-6257-3.
5
Hydrophilization of synthetic biodegradable polymer scaffolds for improved cell/tissue compatibility.
Biomed Mater. 2013 Feb;8(1):014101. doi: 10.1088/1748-6041/8/1/014101.
6
Future Prospects for Scaffolding Methods and Biomaterials in Skin Tissue Engineering: A Review.
Int J Mol Sci. 2016 Nov 25;17(12):1974. doi: 10.3390/ijms17121974.
7
Fabrication of novel high performance ductile poly(lactic acid) nanofiber scaffold coated with poly(vinyl alcohol) for tissue engineering applications.
Mater Sci Eng C Mater Biol Appl. 2016 Mar;60:143-150. doi: 10.1016/j.msec.2015.11.024. Epub 2015 Nov 10.
8
Improved biomaterials for tissue engineering applications: surface modification of polymers.
Curr Top Med Chem. 2008;8(4):341-53. doi: 10.2174/156802608783790893.
9
3D bioprinting in cardiac tissue engineering.
Theranostics. 2021 Jul 6;11(16):7948-7969. doi: 10.7150/thno.61621. eCollection 2021.
10
Novel synthesis strategies for natural polymer and composite biomaterials as potential scaffolds for tissue engineering.
Philos Trans A Math Phys Eng Sci. 2010 Apr 28;368(1917):1981-97. doi: 10.1098/rsta.2010.0009.

引用本文的文献

1
Challenges and Opportunities: Interplay between Infectious Disease and Antimicrobial Resistance in Medical Device Surface Applications.
ACS Omega. 2025 May 20;10(21):20968-20983. doi: 10.1021/acsomega.5c01011. eCollection 2025 Jun 3.
3
Advances in cellulose-based hydrogels: tunable swelling dynamics and their versatile real-time applications.
RSC Adv. 2025 Apr 14;15(15):11688-11729. doi: 10.1039/d5ra00521c. eCollection 2025 Apr 9.
5
Engineering multifunctional surface topography to regulate multiple biological responses.
Biomaterials. 2025 Aug;319:123136. doi: 10.1016/j.biomaterials.2025.123136. Epub 2025 Jan 28.
6
3D Porous Polycaprolactone with Chitosan-Graft-PCL Modified Surface for In Situ Tissue Engineering.
Polymers (Basel). 2025 Jan 30;17(3):383. doi: 10.3390/polym17030383.
7
Model construction and clinical therapeutic potential of engineered cardiac organoids for cardiovascular diseases.
Biomater Transl. 2024 Nov 15;5(4):337-354. doi: 10.12336/biomatertransl.2024.04.002. eCollection 2024.
8
Improvement of cellular pattern organization and clarity through centrifugal force.
Biomed Mater. 2025 Feb 13;20(2):025025. doi: 10.1088/1748-605X/ada508.
9
Cysteine Conjugation: An Approach to Obtain Polymers with Enhanced Muco- and Tissue Adhesion.
Int J Mol Sci. 2024 Nov 13;25(22):12177. doi: 10.3390/ijms252212177.
10
Multiresponsive 4D Printable Hydrogels with Anti-Inflammatory Properties.
ACS Macro Lett. 2024 Sep 17;13(9):1119-1126. doi: 10.1021/acsmacrolett.4c00404. Epub 2024 Aug 14.

本文引用的文献

1
Covalently immobilized biosignal molecule materials for tissue engineering.
Soft Matter. 2007 Dec 11;4(1):46-56. doi: 10.1039/b708359a.
2
Update: Innovation in cardiology (IV). Cardiac tissue engineering and the bioartificial heart.
Rev Esp Cardiol (Engl Ed). 2013 May;66(5):391-9. doi: 10.1016/j.rec.2012.11.012. Epub 2013 Mar 6.
3
Effects of various extracellular matrix proteins on the growth of HL-1 cardiomyocytes.
Cells Tissues Organs. 2013;198(5):349-56. doi: 10.1159/000358755. Epub 2014 Mar 21.
4
Polyurethane-based scaffolds for myocardial tissue engineering.
Interface Focus. 2014 Feb 6;4(1):20130045. doi: 10.1098/rsfs.2013.0045.
5
Myocardial matrix-polyethylene glycol hybrid hydrogels for tissue engineering.
Nanotechnology. 2014 Jan 10;25(1):014011. doi: 10.1088/0957-4484/25/1/014011. Epub 2013 Dec 11.
6
Biomimetic myocardial patches fabricated with poly(ɛ-caprolactone) and polyethylene glycol-based polyurethanes.
J Biomed Mater Res B Appl Biomater. 2014 Jul;102(5):1002-13. doi: 10.1002/jbm.b.33081. Epub 2013 Dec 5.
7
Biomimetic materials and scaffolds for myocardial tissue regeneration.
Macromol Biosci. 2013 Aug;13(8):984-1019. doi: 10.1002/mabi.201200483. Epub 2013 Jul 8.
8
Hydrophilization of synthetic biodegradable polymer scaffolds for improved cell/tissue compatibility.
Biomed Mater. 2013 Feb;8(1):014101. doi: 10.1088/1748-6041/8/1/014101.
9
Vascular endothelial growth factor-delivery systems for cardiac repair: an overview.
Theranostics. 2012;2(6):541-52. doi: 10.7150/thno.3682. Epub 2012 Jun 4.
10
Sustained delivery of VEGF from designer self-assembling peptides improves cardiac function after myocardial infarction.
Biochem Biophys Res Commun. 2012 Jul 20;424(1):105-11. doi: 10.1016/j.bbrc.2012.06.080. Epub 2012 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验